C++ 对象的内存布局(上)

简介:

原文地址:http://blog.csdn.net/haoel/article/details/3081328

为尊重原作者的创作成果,所以原文全部内容都会保留,但是会适当添加我的理解。

前言

07年12月,我写了一篇《C++虚函数表解析》的文章,引起了大家的兴趣。有很多朋友对我的文章留了言,有鼓励我的,有批评我的,还有很多问问题的。我在这里一并对大家的留言表示感谢。这也是我为什么再写一篇续言的原因。因为,在上一篇文章中,我用了的示例都是非常简单的,主要是为了说明一些机理上的问题,也是为了图一些表达上方便和简单。不想,这篇文章成为了打开C++对象模型内存布局的一个引子,引发了大家对C++对象的更深层次的讨论。当然,我之前的文章还有很多方面没有涉及,从我个人感觉下来,在谈论虚函数表里,至少有以下这些内容没有涉及:

1)有成员变量的情况。

2)有重复继承的情况。

3)有虚拟继承的情况。

4)有钻石型虚拟继承的情况。

这些都是我本篇文章需要向大家说明的东西。所以,这篇文章将会是《C++虚函数表解析》的一个续篇,也是一篇高级进阶的文章。我希望大家在读这篇文章之前对C++有一定的基础和了解,并能先读我的上一篇文章。因为这篇文章的深度可能会比较深,而且会比较杂乱,我希望你在读本篇文章时不会有大脑思维紊乱导致大脑死机的情况。;-)

 

对象的影响因素

简而言之,我们一个类可能会有如下的影响因素:

1)成员变量

2)虚函数(产生虚函数表)

3)单一继承(只继承于一个类)

4)多重继承(继承多个类)

5)重复继承(继承的多个父类中其父类有相同的超类)

6)虚拟继承(使用virtual方式继承,为了保证继承后父类的内存布局只会存在一份)

上述的东西通常是C++这门语言在语义方面对对象内部的影响因素,当然,还会有编译器的影响(比如优化),还有字节对齐的影响。在这里我们都不讨论,我们只讨论C++语言上的影响。

本篇文章着重讨论下述几个情况下的C++对象的内存布局情况。

1)单一的一般继承(带成员变量、虚函数、虚函数覆盖)

2)单一的虚拟继承(带成员变量、虚函数、虚函数覆盖)

3)多重继承(带成员变量、虚函数、虚函数覆盖)

4)重复多重继承(带成员变量、虚函数、虚函数覆盖)

5)钻石型的虚拟多重继承(带成员变量、虚函数、虚函数覆盖)

我们的目标就是,让事情越来越复杂。

知识复习

我们简单地复习一下,我们可以通过对象的地址来取得虚函数表的地址,如:

 typedef void(*Fun)(void);
 
            Base b;
 
            Fun pFun = NULL;
 
            cout << "虚函数表地址:" << (int*)(&b) << endl;
            cout << "虚函数表 — 第一个函数地址:" << (int*)*(int*)(&b) << endl;
 
            // Invoke the first virtual function 
            pFun = (Fun)*((int*)*(int*)(&b));
            pFun();

我们同样可以用这种方式来取得整个对象实例的内存布局。因为这些东西在内存中都是连续分布的,我们只需要使用适当的地址偏移量,我们就可以获得整个内存对象的布局。

本篇文章中的例程或内存布局主要使用如下编译器和系统:

1)Windows 7 和 VC++ 2010

2)Cygwin 和 G++ 3.4.4

单一的一般继承

下面,我们假设有如下所示的一个继承关系:

请注意,在这个继承关系中,父类,子类,孙子类都有自己的一个成员变量。而了类覆盖了父类的f()方法,孙子类覆盖了子类的g_child()及其超类的f()。

我们的源程序如下所示:

#include <iostream>
using namespace std;

class Parent {
public:
	int iparent;
	Parent ():iparent (10) {}
	virtual void f() { cout << " Parent::f()" << endl; }
	virtual void g() { cout << " Parent::g()" << endl; }
	virtual void h() { cout << " Parent::h()" << endl; }

};

class Child : public Parent {
public:
	int ichild;
	Child():ichild(100) {}
	virtual void f() { cout << "Child::f()" << endl; }
	virtual void g_child() { cout << "Child::g_child()" << endl; }
	virtual void h_child() { cout << "Child::h_child()" << endl; }
};

class GrandChild : public Child{
public:
	int igrandchild;
	GrandChild():igrandchild(1000) {}
	virtual void f() { cout << "GrandChild::f()" << endl; }
	virtual void g_child() { cout << "GrandChild::g_child()" << endl; }
	virtual void h_grandchild() { cout << "GrandChild::h_grandchild()" << endl; }
};

int _tmain(int argc, _TCHAR* argv[])
{
	typedef void(*Fun)(void);

	GrandChild gc;

	Fun pFun=NULL;

	int** pVtab = (int**)&gc;

	cout << "[0] GrandChild::_vptr->" << endl;
	/*for (int i=0; (Fun)pVtab[0][i]!=NULL; ++i){*/  
	//本人注释 测试环境win7+VS2010 经过调试发现此环境下虚函数并不是以NULL结尾,所以原文修改为如下:
	for (int i=0; i<6; ++i){
		pFun = (Fun)pVtab[0][i];
		cout << "    ["<<i<<"] ";
		pFun();
		
	}
	cout << "[1] Parent.iparent = " << (int)pVtab[1] << endl;
	cout << "[2] Child.ichild = " << (int)pVtab[2] << endl;
	cout << "[3] GrandChild.igrandchild = " << (int)pVtab[3] << endl;
 
	return 0;
}

image

使用图片表示如下:(红色部分为本人修改)

image

可见以下几个方面:

1)虚函数表在最前面的位置。

2)成员变量根据其继承和声明顺序依次放在后面。

3)在单一的继承中,被overwrite的虚函数在虚函数表中得到了更新。

多重继承

下面,再让我们来看看多重继承中的情况,假设有下面这样一个类的继承关系。注意:子类只overwrite了父类的f()函数,而还有一个是自己的函数(我们这样做的目的是为了用g1()作为一个标记来标明子类的虚函数表)。而且每个类中都有一个自己的成员变量:

我们的类继承的源代码如下所示:父类的成员初始为10,20,30,子类的为100

#include <iostream>
using namespace std;

class Base1 {
public:
	int ibase1;
	Base1():ibase1(10) {}
	virtual void f() { cout << "Base1::f()" << endl; }
	virtual void g() { cout << "Base1::g()" << endl; }
	virtual void h() { cout << "Base1::h()" << endl; }

};

class Base2 {
public:
	int ibase2;
	Base2():ibase2(20) {}
	virtual void f() { cout << "Base2::f()" << endl; }
	virtual void g() { cout << "Base2::g()" << endl; }
	virtual void h() { cout << "Base2::h()" << endl; }
};

class Base3 {
public:
	int ibase3;
	Base3():ibase3(30) {}
	virtual void f() { cout << "Base3::f()" << endl; }
	virtual void g() { cout << "Base3::g()" << endl; }
	virtual void h() { cout << "Base3::h()" << endl; }
};


class Derive : public Base1, public Base2, public Base3 {
public:
	int iderive;
	Derive():iderive(100) {}
	virtual void f() { cout << "Derive::f()" << endl; }
	virtual void g1() { cout << "Derive::g1()" << endl; }
};

int _tmain(int argc, _TCHAR* argv[])
{
	typedef void(*Fun)(void);

	Derive d;

	Fun pFun=NULL;

	int** pVtab = (int**)&d;

	cout << "[0] Base1::_vptr->" << endl;
	pFun = (Fun)pVtab[0][0];
	cout << "     [0] ";
	pFun();

	pFun = (Fun)pVtab[0][1];
	cout << "     [1] ";pFun();

	pFun = (Fun)pVtab[0][2];
	cout << "     [2] ";pFun();

	pFun = (Fun)pVtab[0][3];
	cout << "     [3] "; pFun();

	pFun = (Fun)pVtab[0][4];
	cout << "     [4] "; cout<<pFun<<endl;

	cout << "[1] Base1.ibase1 = " << (int)pVtab[1] << endl;


	int s = sizeof(Base1)/4;

	cout << "[" << s << "] Base2::_vptr->"<<endl;
	pFun = (Fun)pVtab[s][0];
	cout << "     [0] "; pFun();

	pFun = (Fun)pVtab[s][1];
	cout << "     [1] "; pFun();

	pFun = (Fun)pVtab[s][2];
	cout << "     [2] "; pFun();

	pFun = (Fun)pVtab[s][3];
	cout << "     [3] ";
	cout<<pFun<<endl;

	cout << "["<< s+1 <<"] Base2.ibase2 = " << (int)pVtab[s+1] << endl;

	s = s + sizeof(Base2)/4;

	cout << "[" << s << "] Base3::_vptr->"<<endl;
	pFun = (Fun)pVtab[s][0];
	cout << "     [0] "; pFun();

	pFun = (Fun)pVtab[s][1];
	cout << "     [1] "; pFun();

	pFun = (Fun)pVtab[s][2];
	cout << "     [2] "; pFun();

	pFun = (Fun)pVtab[s][3];
	cout << "     [3] ";
	cout<<pFun<<endl;

	s++;
	cout << "["<< s <<"] Base3.ibase3 = " << (int)pVtab[s] << endl;
	s++;
	cout << "["<< s <<"] Derive.iderive = " << (int)pVtab[s] << endl;

	return 0;
}

我们通过上面的程序来查看子类实例的内存布局:上面程序中,注意我使用了一个s变量,其中用到了sizof(Base)来找下一个类的偏移量。(因为我声明的是int成员,所以是4个字节,所以没有对齐问题。关于内存的对齐问题,大家可以自行试验,我在这里就不多说了)

image

使用图片表示是下面这个样子:

image

我们可以看到:

1) 每个父类都有自己的虚表。

2) 子类的成员函数被放到了第一个父类的表中。

3) 内存布局中,其父类布局依次按声明顺序排列。

4) 每个父类的虚表中的f()函数都被overwrite成了子类的f()。这样做就是为了解决不同的父类类型的指针指向同一个子类实例,而能够调用到实际的函数。

 


==============================================================================
本文转自被遗忘的博客园博客,原文链接:http://www.cnblogs.com/rollenholt/archive/2012/04/27/2472848.html,如需转载请自行联系原作者
相关文章
|
5月前
|
安全 C语言 C++
比较C++的内存分配与管理方式new/delete与C语言中的malloc/realloc/calloc/free。
在实用性方面,C++的内存管理方式提供了面向对象的特性,它是处理构造和析构、需要类型安全和异常处理的首选方案。而C语言的内存管理函数适用于简单的内存分配,例如分配原始内存块或复杂性较低的数据结构,没有构造和析构的要求。当从C迁移到C++,或在C++中使用C代码时,了解两种内存管理方式的差异非常重要。
208 26
|
10月前
|
存储 程序员 编译器
玩转C++内存管理:从新手到高手的必备指南
C++中的内存管理是编写高效、可靠程序的关键所在。C++不仅继承了C语言的内存管理方式,还增加了面向对象的内存分配机制,使得内存管理既有灵活性,也更加复杂。学习内存管理不仅有助于提升程序效率,还有助于理解计算机的工作原理和资源分配策略。
|
10月前
|
编译器 C++ 开发者
【C++篇】深度解析类与对象(下)
在上一篇博客中,我们学习了C++的基础类与对象概念,包括类的定义、对象的使用和构造函数的作用。在这一篇,我们将深入探讨C++类的一些重要特性,如构造函数的高级用法、类型转换、static成员、友元、内部类、匿名对象,以及对象拷贝优化等。这些内容可以帮助你更好地理解和应用面向对象编程的核心理念,提升代码的健壮性、灵活性和可维护性。
|
6月前
|
C语言 C++
c与c++的内存管理
再比如还有这样的分组: 这种分组是最正确的给出内存四个分区名字:栈区、堆区、全局区(俗话也叫静态变量区)、代码区(也叫代码段)(代码段又分很多种,比如常量区)当然也会看到别的定义如:两者都正确,记那个都选,我选择的是第一个。再比如还有这样的分组: 这种分组是最正确的答案分别是 C C C A A A A A D A B。
125 1
|
9月前
|
存储 Linux C语言
C++/C的内存管理
本文主要讲解C++/C中的程序区域划分与内存管理方式。首先介绍程序区域,包括栈(存储局部变量等,向下增长)、堆(动态内存分配,向上分配)、数据段(存储静态和全局变量)及代码段(存放可执行代码)。接着探讨C++内存管理,new/delete操作符相比C语言的malloc/free更强大,支持对象构造与析构。还深入解析了new/delete的实现原理、定位new表达式以及二者与malloc/free的区别。最后附上一句鸡汤激励大家行动缓解焦虑。
|
9月前
|
编译器 C++
类和对象(中 )C++
本文详细讲解了C++中的默认成员函数,包括构造函数、析构函数、拷贝构造函数、赋值运算符重载和取地址运算符重载等内容。重点分析了各函数的特点、使用场景及相互关系,如构造函数的主要任务是初始化对象,而非创建空间;析构函数用于清理资源;拷贝构造与赋值运算符的区别在于前者用于创建新对象,后者用于已存在的对象赋值。同时,文章还探讨了运算符重载的规则及其应用场景,并通过实例加深理解。最后强调,若类中存在资源管理,需显式定义拷贝构造和赋值运算符以避免浅拷贝问题。
|
9月前
|
存储 编译器 C++
类和对象(上)(C++)
本篇内容主要讲解了C++中类的相关知识,包括类的定义、实例化及this指针的作用。详细说明了类的定义格式、成员函数默认为inline、访问限定符(public、protected、private)的使用规则,以及class与struct的区别。同时分析了类实例化的概念,对象大小的计算规则和内存对齐原则。最后介绍了this指针的工作机制,解释了成员函数如何通过隐含的this指针区分不同对象的数据。这些知识点帮助我们更好地理解C++中类的封装性和对象的实现原理。
|
9月前
|
存储 Java
课时4:对象内存分析
接下来对对象实例化操作展开初步分析。在整个课程学习中,对象使用环节往往是最棘手的问题所在。
|
9月前
|
编译器 C++
类和对象(下)C++
本内容主要讲解C++中的初始化列表、类型转换、静态成员、友元、内部类、匿名对象及对象拷贝时的编译器优化。初始化列表用于成员变量定义初始化,尤其对引用、const及无默认构造函数的类类型变量至关重要。类型转换中,`explicit`可禁用隐式转换。静态成员属类而非对象,受访问限定符约束。内部类是独立类,可增强封装性。匿名对象生命周期短,常用于临时场景。编译器会优化对象拷贝以提高效率。最后,鼓励大家通过重复练习提升技能!
|
10月前
|
安全 C语言 C++
彻底摘明白 C++ 的动态内存分配原理
大家好,我是V哥。C++的动态内存分配允许程序在运行时请求和释放内存,主要通过`new`/`delete`(用于对象)及`malloc`/`calloc`/`realloc`/`free`(继承自C语言)实现。`new`分配并初始化对象内存,`delete`释放并调用析构函数;而`malloc`等函数仅处理裸内存,不涉及构造与析构。掌握这些可有效管理内存,避免泄漏和悬空指针问题。智能指针如`std::unique_ptr`和`std::shared_ptr`能自动管理内存,确保异常安全。关注威哥爱编程,了解更多全栈开发技巧。 先赞再看后评论,腰缠万贯财进门。
456 0