matlib实现梯度下降法(序一)

简介: 数据来源:http://archive.ics.uci.edu/ml/datasets/Combined+Cycle+Power+Plant数据描述:有四个输入特征,这些数据来自电厂,这四个特征和电量输入有关系,现在通过线性回归求它们之间关系的模型参数。

数据来源:http://archive.ics.uci.edu/ml/datasets/Combined+Cycle+Power+Plant

数据描述:

有四个输入特征,这些数据来自电厂,这四个特征和电量输入有关系,现在通过线性回归求它们之间关系的模型参数。
- 温度,Temperature (T) in the range 1.81°C and 37.11°C,
- 大气压,Ambient Pressure (AP) in the range 992.89-1033.30 milibar,
- 相对湿度,Relative Humidity (RH) in the range 25.56% to 100.16%
- 排气容积,Exhaust Vacuum (V) in teh range 25.36-81.56 cm Hg
- 输出电力百万瓦:Net hourly electrical energy output (EP) 420.26-495.76 MW
The averages are taken from various sensors located around the plant that record the ambient variables every second. The variables are given without normalization.

注意,这些数据没有归一化,由于四个特征大小差别很大,所以要进行归一化操作,具体操作参照http://www.cnblogs.com/mikewolf2002/p/7560748.html 3.4节。

总共数据9568条数据,我们选取前9000条数据为训练数据,放在train.txt,后面568条数据为验证数据,放在verify.txt

clear all; close all; clc;
data = load('train.txt');
x = data(:,1:4); %温度,大气压,湿度,排气容积
y = data(:,5); %输出电力
m = length(y); % 样本数目
x = [ones(m, 1), x]; % 输入特征增加一列,x0=1
meanx = mean(x);%求均值
sigmax = std(x);%求标准偏差
x(:,2) = (x(:,2)-meanx(2))./sigmax(2);
x(:,3) = (x(:,3)-meanx(3))./sigmax(3);
x(:,4) = (x(:,4)-meanx(4))./sigmax(4);
x(:,5) = (x(:,5)-meanx(5))./sigmax(5);
theta = zeros(size(x(1,:)))'; % 初始化theta

MAX_ITR = 1500;%最大迭代数目
alpha = 0.1; %学习率
i = 0;
while(i<MAX_ITR)
   grad =  (1/m).*x' * ((x * theta) - y);%求出梯度
   theta = theta - alpha .* grad;%更新theta
   if(i>2)
       delta = old_theta-theta;
       delta_v = delta.*delta;
       if(delta_v<0.000000000000001)%如果两次theta的内积变化很小,退出迭代
           break;
       end
   end
   old_theta = theta;
   %theta
   i=i+1;
end
data1 = load('verify.txt');
x1 = data1(:,1:4); %温度,压力,适度,压强
y1 = data1(:,5); %输出电力
m1 = length(y1); % 样本数目
x1 = [ones(m1, 1), x1]; % 输入特征增加一列,x0=1

meanx1 = mean(x1);%求均值
sigmax1 = std(x1);%求标准偏差
x1(:,2) = (x1(:,2)-meanx1(2))./sigmax1(2);
x1(:,3) = (x1(:,3)-meanx1(3))./sigmax1(3);
x1(:,4) = (x1(:,4)-meanx1(4))./sigmax1(4);
x1(:,5) = (x1(:,5)-meanx1(5))./sigmax1(5);

y2 = x1*theta;
y2
View Code

y1为原始验证数据结果,y2为预测结果,从下面图中看到y1/y2都挺接近的。


image

目录
打赏
0
0
0
0
7
分享
相关文章
kde
|
8天前
|
Docker镜像加速指南:手把手教你配置国内镜像源
配置国内镜像源可大幅提升 Docker 拉取速度,解决访问 Docker Hub 缓慢问题。本文详解 Linux、Docker Desktop 配置方法,并提供测速对比与常见问题解答,附最新可用镜像源列表,助力高效开发部署。
kde
4672 12
国内如何安装和使用 Claude Code镜像教程 - Windows 用户篇
国内如何安装和使用 Claude Code镜像教程 - Windows 用户篇
753 3
Dify MCP 保姆级教程来了!
大语言模型,例如 DeepSeek,如果不能联网、不能操作外部工具,只能是聊天机器人。除了聊天没什么可做的。
1140 13
|
5天前
typora免费版,激活方法,Typora使用教程
Typora是一款简洁高效的Markdown编辑器,支持即时渲染。本教程涵盖安装方法、文件操作、视图控制、格式排版、字体样式及Markdown语法,助你快速上手使用Typora进行高效写作。
961 0
【保姆级图文详解】大模型、Spring AI编程调用大模型
【保姆级图文详解】大模型、Spring AI编程调用大模型
478 7
【保姆级图文详解】大模型、Spring AI编程调用大模型
2025年最新版最细致Maven安装与配置指南(任何版本都可以依据本文章配置)
本文详细介绍了Maven的项目管理工具特性、安装步骤和配置方法。主要内容包括: Maven概述:解释Maven作为基于POM的构建工具,具备依赖管理、构建生命周期和仓库管理等功能。 安装步骤: 从官网下载最新版本 解压到指定目录 创建本地仓库文件夹 关键配置: 修改settings.xml文件 配置阿里云和清华大学镜像仓库以加速依赖下载 设置本地仓库路径 附加说明:包含详细的配置示例和截图指导,适用于各种操作系统环境。 本文提供了完整的Maven安装和配置
2025年最新版最细致Maven安装与配置指南(任何版本都可以依据本文章配置)
企业如何用Data Agent实现数据价值效率的飞跃
在数字化转型背景下,数据被视为“新时代的石油”,但多数企业仍面临数据价值难以高效挖掘的困境。文章深入剖析了当前数据分析中存在的“被动响应”模式及其带来的四大挑战,并提出通过Data Agent实现主动智能与数据分析民主化的新路径。Data Agent基于大语言模型和强化学习技术,具备理解、思考与行动能力,能够从“人找数据”转变为“数据找人”,推动数据洞察从专业人员走向全员参与。
让AI时代的卓越架构触手可及,阿里云技术解决方案开放免费试用
阿里云推出基于场景的解决方案免费试用活动,新老用户均可领取100点试用点,完成部署还可再领最高100点,相当于一年可获得最高200元云资源。覆盖AI、大数据、互联网应用开发等多个领域,支持热门场景如DeepSeek部署、模型微调等,助力企业和开发者快速验证方案并上云。
377 27
让AI时代的卓越架构触手可及,阿里云技术解决方案开放免费试用
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等

登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问