SQL Server-比较ROW_NUMBER VS TOP N查询性能差异

本文涉及的产品
云数据库 RDS SQL Server,基础系列 2核4GB
简介: ROW_NUMBER VS TOP N 抱歉各位,从八月份开始一直在着手写EntityFramework 6.x和EntityFramework Core 2.0的书籍写作,所以最近一直遗漏了对博客的管理,后面会着手于写SQL Server、EntityFramework Core和.NET Core方面的博客。

ROW_NUMBER VS TOP N

抱歉各位,从八月份开始一直在着手写EntityFramework 6.x和EntityFramework Core 2.0的书籍写作,所以最近一直遗漏了对博客的管理,后面会着手于写SQL Server、EntityFramework Core和.NET Core方面的博客。我们知道如果需要查询前N行数据,除了可以利用TOP N进行查询外,同样也可以利用ROW_NUMBER来达到同样的效果,那么二者使用哪个性能会更好呢?下面我们来比较下。

我们利用AdventureWorks2012示例库中的Production.Product表来进行演示,如下:

DBCC DROPCLEANBUFFERS()
DBCC FREEPROCCACHE()
GO

--ROW_NUMBER QUERY
SELECT ProductID
FROM (
    SELECT ProductID, ROW_NUMBER() OVER (ORDER BY ProductID) AS RN
    FROM Production.Product
    ) AS T
WHERE T.RN <= 100
GO

-- TOP N QUERY
SELECT 
    TOP 100 ProductID
FROM Production.Product
ORDER BY ProductID
GO

589642_20171228224331491_373195070

如上图所知,对于这两个查询计划的成本是一样的,都为50%。 如果我们要检查在两个聚集索引扫描操作符中读取的估计行数,那么我们会注意到两者都显示相同的值,即100。可以说聚集索引扫描的估计和实际行数是相同的都是100,如下。
2

是不是就以此说明二者性能是一样的呢?稍等片刻,接下来我们将查询基数再设置大一点看看,比如1000而不再是100,如下:

DBCC DROPCLEANBUFFERS()
DBCC FREEPROCCACHE()
GO
SET STATISTICS IO ON
SET STATISTICS TIME ON
--ROW_NUMBER QUERY
SELECT ProductID
FROM (
    SELECT ProductID, ROW_NUMBER() OVER (ORDER BY ProductID) AS RN
    FROM Production.Product
    ) AS T
WHERE T.RN <= 1000
GO

-- TOP N QUERY
SELECT 
    TOP 1000 ProductID
FROM Production.Product
ORDER BY ProductID
GO

3

从如上截图可以看出,使用ROW_NUMBER进行查询的速度要明显快于TOP N,即29%和71%。 但是,我们还需要在等一下,因为我们在这里看到的成本只是估计成本。 如果操作的估算不准确,那么查询计划估算成本也将不准确。 接下来我们检查两个计划中的聚集索引扫描的属性:
4

5

我们可以看到,使用ROW_NUMBER查询的估计行数为100,而实际数量为504,查询计划的估计成本是基于估计的行数所计算得来,即100。我们还是不能够相信估计的计划成本。 我们再来看看统计数据:
6

经过上面的统计,我们可以根据统计数据而做出最终决定,而不是比较执行计划的估计成本。TOP N的查询性能优于ROW_NUMBER。

总结

从上比较TOP N和ROW_NUMBER的查询得知,查询计划所得到的成本并不是判断性能的最终依据,只是基础性的判断,我们最终还得集合IO和TIME等来综合判断性能差异。l

目录
相关文章
|
4月前
|
SQL 数据挖掘 数据库
第三篇:高级 SQL 查询与多表操作
本文深入讲解高级SQL查询技巧,涵盖多表JOIN操作、聚合函数、分组查询、子查询及视图索引等内容。适合已掌握基础SQL的学习者,通过实例解析INNER/LEFT/RIGHT/FULL JOIN用法,以及COUNT/SUM/AVG等聚合函数的应用。同时探讨复杂WHERE条件、子查询嵌套,并介绍视图简化查询与索引优化性能的方法。最后提供实践建议与学习资源,助你提升SQL技能以应对实际数据处理需求。
278 1
|
1月前
|
SQL 人工智能 数据库
【三桥君】如何正确使用SQL查询语句:避免常见错误?
三桥君解析了SQL查询中的常见错误和正确用法。AI产品专家三桥君通过三个典型案例:1)属性重复比较错误,应使用IN而非AND;2)WHERE子句中非法使用聚合函数的错误,应改用HAVING;3)正确的分组查询示例。三桥君还介绍了学生、课程和选课三个关系模式,并分析了SQL查询中的属性比较、聚合函数使用和分组查询等关键概念。最后通过实战练习帮助读者巩固知识,强调掌握这些技巧对提升数据库查询效率的重要性。
79 0
|
3月前
|
SQL 关系型数据库 PostgreSQL
CTE vs 子查询:深入拆解PostgreSQL复杂SQL的隐藏性能差异
本文深入探讨了PostgreSQL中CTE(公共表表达式)与子查询的选择对SQL性能的影响。通过分析两者底层机制,揭示CTE的物化特性及子查询的优化融合优势,并结合多场景案例对比执行效率。最终给出决策指南,帮助开发者根据数据量、引用次数和复杂度选择最优方案,同时提供高级优化技巧和版本演进建议,助力SQL性能调优。
238 1
|
2月前
|
SQL
SQL中如何删除指定查询出来的数据
SQL中如何删除指定查询出来的数据
|
4月前
|
SQL 关系型数据库 MySQL
凌晨2点报警群炸了:一条sql 执行200秒!搞定之后,我总结了一个慢SQL查询、定位分析解决的完整套路
凌晨2点报警群炸了:一条sql 执行200秒!搞定之后,我总结了一个慢SQL查询、定位分析解决的完整套路
凌晨2点报警群炸了:一条sql 执行200秒!搞定之后,我总结了一个慢SQL查询、定位分析解决的完整套路
|
3月前
|
SQL 存储 弹性计算
OSS Select 加速查询:10GB CSV 文件秒级过滤的 SQL 语法优化技巧
OSS Select 可直接在对象存储上执行 SQL 过滤,跳过文件下载,仅返回所需数据,性能比传统 ECS 方案提升 10~100 倍。通过减少返回列、使用等值查询、避免复杂函数、分区剪枝及压缩优化等技巧,可大幅降低扫描与传输量,显著提升查询效率并降低成本。
|
5月前
|
SQL 数据库 数据安全/隐私保护
数据库数据恢复——sql server数据库被加密的数据恢复案例
SQL server数据库数据故障: SQL server数据库被加密,无法使用。 数据库MDF、LDF、log日志文件名字被篡改。 数据库备份被加密,文件名字被篡改。
|
2月前
|
SQL XML Java
配置Spring框架以连接SQL Server数据库
最后,需要集成Spring配置到应用中,这通常在 `main`方法或者Spring Boot的应用配置类中通过加载XML配置或使用注解来实现。
198 0
|
12月前
|
SQL 数据库
数据库数据恢复—SQL Server数据库报错“错误823”的数据恢复案例
SQL Server附加数据库出现错误823,附加数据库失败。数据库没有备份,无法通过备份恢复数据库。 SQL Server数据库出现823错误的可能原因有:数据库物理页面损坏、数据库物理页面校验值损坏导致无法识别该页面、断电或者文件系统问题导致页面丢失。
227 13
数据库数据恢复—SQL Server数据库报错“错误823”的数据恢复案例
|
6月前
|
SQL 数据库连接 Linux
数据库编程:在PHP环境下使用SQL Server的方法。
看看你吧,就像一个调皮的小丑鱼在一片广阔的数据库海洋中游弋,一路上吞下大小数据如同海中的珍珠。不管有多少难关,只要记住这个流程,剩下的就只是探索未知的乐趣,沉浸在这个充满挑战的数据库海洋中。
132 16

热门文章

最新文章