Java Metrics

简介: <h2 class="note-title" style="font-family:'Helvetica Neue',Arial,'Hiragino Sans GB',STHeiti,'Microsoft YaHei','WenQuanYi Micro Hei',SimSun,Song,sans-serif; line-height:1.1; color:rgb(22,32,41); ma

Java Metrics

Java Metrics是一个功能比较强大的java统计库,它的输出组件也很强大,帮我们做好了:

  • 输出到Ganglia
  • 输出到控制台
  • 输出到JMX
  • 输出Json

详细见:dropwizard.github.io/metrics/

依赖

添加依赖,如gradle:

    compile "io.dropwizard.metrics:metrics-core:3.1.0"
    compile "io.dropwizard.metrics:metrics-ganglia:3.1.0"

如果需要ganglia输出功能,则需要metrics-ganglia包。我写的自动压测工具test-framework主要用失败计数,QPS统计。

统计调用频率

计数型的统计,比如计算失败次数,每次+1,则可以用Meter

public class GetStarted {
    static final MetricRegistry metrics = new MetricRegistry();
    public static void main(String args[]) {
        startReport();
        //metrics:事件总数,平均速率,包含1分钟,5分钟,15分钟的速率
        Meter requests = metrics.meter("requests");
        //计数一次
        requests.mark();
        wait5Seconds();
    }

    static void startReport() {
        //注册metrics,每个1秒打印metrics到控制台
        ConsoleReporter reporter = ConsoleReporter.forRegistry(metrics)
                .convertRatesTo(TimeUnit.SECONDS)
                .convertDurationsTo(TimeUnit.MILLISECONDS)
                .build();
        reporter.start(1, TimeUnit.SECONDS);
    }

    static void wait5Seconds() {
        try {
            Thread.sleep(5*1000);
        }
        catch(InterruptedException e) {}
    }
}

效果:

14-10-14 21:28:53 ==============================================================

-- Meters ----------------------------------------------------------------------
requests
             count = 1
         mean rate = 1.00 events/second
     1-minute rate = 0.00 events/second
     5-minute rate = 0.00 events/second
    15-minute rate = 0.00 events/second


14-10-14 21:28:54 ==============================================================

-- Meters ----------------------------------------------------------------------
requests
             count = 1
         mean rate = 0.51 events/second
     1-minute rate = 0.00 events/second
     5-minute rate = 0.00 events/second
    15-minute rate = 0.00 events/second


14-10-14 21:28:55 ==============================================================

-- Meters ----------------------------------------------------------------------
requests
             count = 1
         mean rate = 0.33 events/second
     1-minute rate = 0.00 events/second
     5-minute rate = 0.00 events/second
    15-minute rate = 0.00 events/second


14-10-14 21:28:56 ==============================================================

-- Meters ----------------------------------------------------------------------
requests
             count = 1
         mean rate = 0.25 events/second
     1-minute rate = 0.00 events/second
     5-minute rate = 0.00 events/second
    15-minute rate = 0.00 events/second


14-10-14 21:28:57 ==============================================================

-- Meters ----------------------------------------------------------------------
requests
             count = 1
         mean rate = 0.20 events/second
     1-minute rate = 0.00 events/second
     5-minute rate = 0.00 events/second
    15-minute rate = 0.00 events/second

统计QPS

根据时间来计算qps,可以用Timer

public class TimerTest {
    static final MetricRegistry metrics = new MetricRegistry();
    private static Timer timer = metrics.timer(MetricRegistry.name(TimerTest.class, "calculation-duration"));
    public static void main(String[] args) throws InterruptedException {
        // TODOAuto-generated method stub
        startReport();
        Random rn = new Random();
        while (true) {
            //统计开始
            final Timer.Context context = timer.time();
            int sleepTime = rn.nextInt(2000);
            Thread.sleep(sleepTime);
            System.out.println("处理耗时:" + sleepTime);
            //统计结束
            context.stop();
        }
    }
    static void startReport() {
        //注册metrics,每个1秒打印metrics到控制台
        ConsoleReporter reporter = ConsoleReporter.forRegistry(metrics)
                .convertRatesTo(TimeUnit.SECONDS)
                .convertDurationsTo(TimeUnit.MILLISECONDS)
                .build();
        reporter.start(1, TimeUnit.SECONDS);
    }

}

结果:

处理耗时:996
14-10-14 22:40:34 ==============================================================

-- Timers ----------------------------------------------------------------------
com.edwardsbean.test.TimerTest.calculation-duration
             count = 1
         mean rate = 0.91 calls/second
     1-minute rate = 0.00 calls/second
     5-minute rate = 0.00 calls/second
    15-minute rate = 0.00 calls/second
               min = 995.91 milliseconds
               max = 995.91 milliseconds
              mean = 995.91 milliseconds
            stddev = 0.00 milliseconds
            median = 995.91 milliseconds
              75% <= 995.91 milliseconds
              95% <= 995.91 milliseconds
              98% <= 995.91 milliseconds
              99% <= 995.91 milliseconds
            99.9% <= 995.91 milliseconds


14-10-14 22:40:35 ==============================================================

-- Timers ----------------------------------------------------------------------
com.edwardsbean.test.TimerTest.calculation-duration
             count = 1
         mean rate = 0.48 calls/second
     1-minute rate = 0.00 calls/second
     5-minute rate = 0.00 calls/second
    15-minute rate = 0.00 calls/second
               min = 995.91 milliseconds
               max = 995.91 milliseconds
              mean = 995.91 milliseconds
            stddev = 0.00 milliseconds
            median = 995.91 milliseconds
              75% <= 995.91 milliseconds
              95% <= 995.91 milliseconds
              98% <= 995.91 milliseconds
              99% <= 995.91 milliseconds
            99.9% <= 995.91 milliseconds

关于输出

每一个输出组件都有一个对应的Reporter主类,比如Ganglia:

GMetric ganglia = new GMetric(address[0].getHostName(), address[0].getPort(), GMetric.UDPAddressingMode.MULTICAST, 1);

GangliaReporter gangliaReporter = GangliaReporter.forRegistry(metricRegistry)
                .convertRatesTo(TimeUnit.SECONDS)
                .convertDurationsTo(TimeUnit.MILLISECONDS)
                .build(ganglia);
//开始汇报
gangliaReporter.start(1, TimeUnit.SECONDS);

而输出控制台的Reporter

###
ConsoleReporter reporter = ConsoleReporter.forRegistry(metrics)
                .convertRatesTo(TimeUnit.SECONDS)
                .convertDurationsTo(TimeUnit.MILLISECONDS)
                .build();
reporter.start(1, TimeUnit.SECONDS);
目录
相关文章
|
6月前
|
存储 监控 Java
【深度挖掘Java性能调优】「底层技术原理体系」深入探索Java服务器性能监控Metrics框架的实现原理分析(Counter篇)
【深度挖掘Java性能调优】「底层技术原理体系」深入探索Java服务器性能监控Metrics框架的实现原理分析(Counter篇)
164 0
|
6月前
|
监控 算法 Java
【深度挖掘Java性能调优】「底层技术原理体系」深入探索Java服务器性能监控Metrics框架的实现原理分析(Gauge和Histogram篇)
【深度挖掘Java性能调优】「底层技术原理体系」深入探索Java服务器性能监控Metrics框架的实现原理分析(Gauge和Histogram篇)
91 0
|
5月前
|
运维 监控 Java
性能监控之 Java Metrics 度量包
【6月更文挑战10天】标题性能监控之 Java Metrics 度量包
127 2
java.lang.NoClassDefFoundError: org/springframework/core/metrics/ApplicationStartup
java.lang.NoClassDefFoundError: org/springframework/core/metrics/ApplicationStartup
524 0
|
9天前
|
安全 Java 测试技术
Java并行流陷阱:为什么指定线程池可能是个坏主意
本文探讨了Java并行流的使用陷阱,尤其是指定线程池的问题。文章分析了并行流的设计思想,指出了指定线程池的弊端,并提供了使用CompletableFuture等替代方案。同时,介绍了Parallel Collector库在处理阻塞任务时的优势和特点。
|
18天前
|
安全 Java
java 中 i++ 到底是否线程安全?
本文通过实例探讨了 `i++` 在多线程环境下的线程安全性问题。首先,使用 100 个线程分别执行 10000 次 `i++` 操作,发现最终结果小于预期的 1000000,证明 `i++` 是线程不安全的。接着,介绍了两种解决方法:使用 `synchronized` 关键字加锁和使用 `AtomicInteger` 类。其中,`AtomicInteger` 通过 `CAS` 操作实现了高效的线程安全。最后,通过分析字节码和源码,解释了 `i++` 为何线程不安全以及 `AtomicInteger` 如何保证线程安全。
java 中 i++ 到底是否线程安全?
|
5天前
|
安全 Java 开发者
深入解读JAVA多线程:wait()、notify()、notifyAll()的奥秘
在Java多线程编程中,`wait()`、`notify()`和`notifyAll()`方法是实现线程间通信和同步的关键机制。这些方法定义在`java.lang.Object`类中,每个Java对象都可以作为线程间通信的媒介。本文将详细解析这三个方法的使用方法和最佳实践,帮助开发者更高效地进行多线程编程。 示例代码展示了如何在同步方法中使用这些方法,确保线程安全和高效的通信。
25 9
|
8天前
|
存储 安全 Java
Java多线程编程的艺术:从基础到实践####
本文深入探讨了Java多线程编程的核心概念、应用场景及其实现方式,旨在帮助开发者理解并掌握多线程编程的基本技能。文章首先概述了多线程的重要性和常见挑战,随后详细介绍了Java中创建和管理线程的两种主要方式:继承Thread类与实现Runnable接口。通过实例代码,本文展示了如何正确启动、运行及同步线程,以及如何处理线程间的通信与协作问题。最后,文章总结了多线程编程的最佳实践,为读者在实际项目中应用多线程技术提供了宝贵的参考。 ####
|
5天前
|
监控 安全 Java
Java中的多线程编程:从入门到实践####
本文将深入浅出地探讨Java多线程编程的核心概念、应用场景及实践技巧。不同于传统的摘要形式,本文将以一个简短的代码示例作为开篇,直接展示多线程的魅力,随后再详细解析其背后的原理与实现方式,旨在帮助读者快速理解并掌握Java多线程编程的基本技能。 ```java // 简单的多线程示例:创建两个线程,分别打印不同的消息 public class SimpleMultithreading { public static void main(String[] args) { Thread thread1 = new Thread(() -> System.out.prin