云上深度学习实践(一)-GPU云服务器TensorFlow单机多卡训练性能实践

简介: 本文将介绍TensorFlow在阿里云GPU云服务器上的单机性能表现,并对单机多卡的性能调优给出了一些建议。

目录
云上深度学习实践(一)-GPU云服务器TensorFlow单机多卡训练性能实践
云上深度学习实践(二)-云上MXNet实践

tensorflow_logo

1 背景
  2015年11月9日,Google发布深度学习框架TensorFlow。Google表示,TensorFlow在设计上尤其针对克服其第一代深度学习框架DistBelief 的短板,灵活、更通用、易使用、更快,而且完全开源。在短短的一年时间内,在GitHub上,TensorFlow就成为了最流行的深度学习项目。
  本文将介绍TensorFlow在阿里云GPU云服务器上的单机性能表现,并对单机多卡的训练性能调优给出了一些建议。

2 使用卷积神经网络进行图像分类
  卷积神经网络(Convolutional Neural Network)是一种前馈神经网络,对于图像处理有非常出色的表现。早在20世纪80年代末,Yann LeCun(曾在多伦多大学跟随深度学习鼻祖Geoffrey Hinton进行博士后研究)作为贝尔实验室的研究员提出了卷积网络技术,并展示如何使用它来大幅度提高手写识别能力。
  2012年,Geoffrey E. Hinton的弟子Alex Krizhevsky在ILSVRC-2012的图像分类比赛中使用2块Nvidia GTX 580 GPU训练的多层神经网络(后来被称为AlexNet)以15.3%的top-5测试错误率摘得冠军。AlexNet包含6000万参数和65万神经节点。
  2014年,Google公司的GoogleNet摘得ILSVRC挑战赛的冠军,将Top5 的错误率降低到6.67%,它是一个22层的卷积神经网络,有500多万个参数。
  VGG,ILSVRC-2014的亚军,Top5 的错误率为7.32%,16层的VGG网络,参数高达1亿3千多万。
  ResNet,ILSVRC’15数据集可以达到3.57%的Top-5错误率,50层的ResNet参数90多万,152层参数230多万。
  InceptionV3,GoogLeNet的升级版,参数不到250万,ILSVRC-2012数据集Top-5错误率可以达到3.5%。
  卷积神经网络在图像分类领域已经取得了非常好的表现,被广泛采用,我们将会使用以上几个主流的卷积神经网络的TensorFlow训练BenchMark在阿里云GN5 GPU云服务器(8卡P100)上进行性能测试,并给出性能调优的一些建议。

3 调优策略
  如何在多GPU机器上获得最优的训练性能是用户非常关心的问题。通常的方法是使用数据并行。也就是说要将模型的多个拷贝放到每个GPU上,将一个batch的数据划分到每个GPU上计算。每个GPU如何获取更新的变量以及返回梯度对最终的性能和扩展性都会有影响。
  针对不同复杂度的网络,会有不同的策略。网络的复杂度体现在变量的数目以及网络的深度,最终会体现在参数传递的数据量和计算量上,对于单机多卡,会更多的考虑变量的规模,这会直接决定训练过程中的通信数据量,从而影响最终的扩展性。
  目前在TensorFlow上对于变量的放置主要有两种策略,一种是Parameter Server,一种是Replicated。
  下面几节会详细介绍这些策略以及相应的使用场景,但在阿里云GPU云服务器上的最佳策略,我们会在后面的数据实测章节通过实验来说明。
3.1 Parameter Server
  这种模式下,梯度的聚合放到参数服务器(Parameter Server)上,参数服务器可以是CPU也可以是GPU,通常会放到CPU上。每个GPU上的训练模型副本都会从参数服务器获取最新的变量并各自更新自己本地的变量。获取变量的方式是使用TensorFlow中的标准显示拷贝。
  一般建议像ResNet、InceptionV3这样的参数规模较小的网络,可以选择参数服务器模式,拷贝的压力不会太大。
3.2 Replicated
  这种模式下,服务器上的每个GPU都有模型的副本和自己的变量。变量的值在获取到完全聚合的梯度后会在本地完成变量的更新。所以在训练开始的时候变量和数据本地都已准备好,可以立即开始前向的计算,后向计算需要汇总说有的GPU计算结果后使用聚合的梯度。
  梯度聚合一般有两种方式:

  1. 使用标准的TensorFlow操作汇总到一个设备上(CPU或者是GPU),然后再将聚合的梯度拷贝回所有的GPU。
  2. 使用NVIDIA的NCCL,具体会在下节阐述。
    一般建议像AlexNet和VGG这样的参数规模比较大的网络使用这种方式,避免使用Parameter Server模式时集中在一个设备上做梯度聚合和变量更新导致出现通信性能瓶颈。

3.3 NCCL
  如上节所述,为了在不同GPU间广播变量和聚合梯度,可以使用TensorFlow的拷贝机制,也可以选择NCCL。
  NCCL(NVIDIA Collective Communications Library)提供了不同GPU间广播和聚合数据的高效通信原语。NCCL会在每个GPU上调度一个协同工作的kernel,这个kernel知道如何最好的利用底层硬件的拓扑(比如可以利用GPUDirect P2P技术或者NVLink)从而选择合理的通信策略,这个kernel会使用GPU上的一个SM(streaming multiprocessor)来完成上述通信工作。
  使用NCCL通常能够带来更高的通信速度,但是并不一定能够加速整体的训练性能。因为尽管NCCL可以有更快的传输数据,但是它会占用一个SM资源,同时会增加L2 Cache的压力,所以在某些场景下可能反而加速效果并不如拷贝机制。比如当GPU数目比较多时可能使用NCCL效果会比较好,但是GPU比较少时,拷贝可能会比较好。我们可以从后面的实测数据分析中看到这个结论。

4 性能实测
  我们在阿里云上的GN5 GPU云服务器(8卡P100)上使用TensorFlow测试了InceptionV3、ResNet50、ResNet152、AlexNet、VGG16几个经典卷积神经网络的用于图像分类模型的训练性能,并使用不同的策略做了比较,具体实测数据如下。
4.1 InceptionV3
Parameter Server(CPU):
1
Parameter Server(GPU):
2
Replicated(NCCL):
3
Replicated(NONE):
4
Replicated(PSCPU):
5
4.2 ResNet50
Parameter Server(CPU):
6
Parameter Server(GPU):
7
Replicated(NCCL):
8
Replicated(NONE):
9
Replicated(PSCPU):
10
4.3 ResNet152
Parameter Server(CPU):
11
Parameter Server(GPU):
12
Replicated(NCCL):
13
Replicated(NONE):
14
Replicated(PSCPU):
15
4.4 AlexNet
Parameter Server(CPU):
16
Parameter Server(GPU):
17
Replicated(NCCL):
18
Replicated(NONE):
19
Replicated(PSCPU):
20
4.5 VGG16
Parameter Server(CPU):
21
Parameter Server(GPU):
22
Replicated(NCCL):
23
Replicated(NONE):
24
Replicated(PSCPU):
25
5 数据分析

  从以上实测数据,我们可以总结出在GN5实例上的性能策略:

  1. InceptionV3和ResNet这样参数规模不是很大的网络,使用CPU做Parameter Server的8卡性能都比较好,另外,使用Replicated策略时,只使用CPU做梯度聚合时的8卡性能最好,甚至比CPU做Parameter Server还好。所以借助CPU集中处理参数更新或者梯度聚合,对于参数规模不大的网络来说,的确具有更好的多卡性能扩展性。
  2. 对于AlexNet和VGG16这样的参数规模比较大的网络,使用Replicated策略的NCCL和PSCPU方式的性能都比较好,不过使用CPU做Parameter Server的效果也不错。当然,对于即将发布的支持NVLink的GN6(V100)GPU云服务来说,相信针对NVLink特别优化的NCCL会有更出色表现,后续我们会在GN6上通过实测来分析验证。
  3. 使用Replicated策略时,NCCL在2卡或者4卡的性能都不是最好的或者是相对较差的,不如拷贝的方式,8卡时往往性能都比较好,这也说明了NCCL在GPU数量较多时的效果会更好一些。

6 总结
  本文通过实测给出了在阿里云GPU云服务器上使用TensorFlow进行单机多卡训练的一些性能调优指南,对于其他网络和框架同样有一定的参考意义,读者可以根据自己框架和网络的特点调整相应参数,从而达到最优的训练性能。

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
目录
相关文章
|
4月前
|
测试技术 异构计算
|
2月前
|
机器学习/深度学习 算法框架/工具 网络架构
深度学习中的正则化技术及其对模型性能的影响
本文深入探讨了深度学习领域中正则化技术的重要性,通过分析L1、L2以及Dropout等常见正则化方法,揭示了它们如何帮助防止过拟合,提升模型的泛化能力。文章还讨论了正则化在不同类型的神经网络中的应用,并指出了选择合适正则化策略的关键因素。通过实例和代码片段,本文旨在为读者提供关于如何在实际问题中有效应用正则化技术的深刻见解。
|
3月前
|
机器学习/深度学习 测试技术 PyTorch
深度学习之测量GPU性能的方式
在深度学习中,测量GPU性能是一个多方面的任务,涉及运行时间、吞吐量、GPU利用率、内存使用情况、计算能力、端到端性能测试、显存带宽、框架自带性能工具和基准测试工具等多种方法。通过综合使用这些方法,可以全面评估和优化GPU的性能,提升深度学习任务的效率和效果。
230 5
|
3月前
|
人工智能 弹性计算 编解码
阿里云GPU云服务器性能、应用场景及收费标准和活动价格参考
GPU云服务器作为阿里云提供的一种高性能计算服务,通过结合GPU与CPU的计算能力,为用户在人工智能、高性能计算等领域提供了强大的支持。其具备覆盖范围广、超强计算能力、网络性能出色等优势,且计费方式灵活多样,能够满足不同用户的需求。目前用户购买阿里云gpu云服务器gn5 规格族(P100-16G)、gn6i 规格族(T4-16G)、gn6v 规格族(V100-16G)有优惠,本文为大家详细介绍阿里云gpu云服务器的相关性能及收费标准与最新活动价格情况,以供参考和选择。
|
3月前
|
机器学习/深度学习 算法 开发者
探索深度学习中的优化器选择对模型性能的影响
在深度学习领域,优化器的选择对于模型训练的效果具有决定性作用。本文通过对比分析不同优化器的工作原理及其在实际应用中的表现,探讨了如何根据具体任务选择合适的优化器以提高模型性能。文章首先概述了几种常见的优化算法,包括梯度下降法、随机梯度下降法(SGD)、动量法、AdaGrad、RMSProp和Adam等;然后,通过实验验证了这些优化器在不同数据集上训练神经网络时的效率与准确性差异;最后,提出了一些基于经验的规则帮助开发者更好地做出选择。
|
4月前
|
缓存 算法 测试技术
|
4月前
|
人工智能 语音技术 UED
仅用4块GPU、不到3天训练出开源版GPT-4o,这是国内团队最新研究
【10月更文挑战第19天】中国科学院计算技术研究所提出了一种名为LLaMA-Omni的新型模型架构,实现与大型语言模型(LLMs)的低延迟、高质量语音交互。该模型集成了预训练的语音编码器、语音适配器、LLM和流式语音解码器,能够在不进行语音转录的情况下直接生成文本和语音响应,显著提升了用户体验。实验结果显示,LLaMA-Omni的响应延迟低至226ms,具有创新性和实用性。
161 1
|
3月前
|
机器学习/深度学习 数据采集 算法
利用深度学习优化图像识别系统的性能
利用深度学习优化图像识别系统的性能
58 0
|
2月前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
349 55
|
3月前
|
机器学习/深度学习 数据采集 数据可视化
TensorFlow,一款由谷歌开发的开源深度学习框架,详细讲解了使用 TensorFlow 构建深度学习模型的步骤
本文介绍了 TensorFlow,一款由谷歌开发的开源深度学习框架,详细讲解了使用 TensorFlow 构建深度学习模型的步骤,包括数据准备、模型定义、损失函数与优化器选择、模型训练与评估、模型保存与部署,并展示了构建全连接神经网络的具体示例。此外,还探讨了 TensorFlow 的高级特性,如自动微分、模型可视化和分布式训练,以及其在未来的发展前景。
338 5