阿里首次披露中台战略:OneData的统一数据标准和实时数据分析是核心

本文涉及的产品
阿里云百炼推荐规格 ADB PostgreSQL,4核16GB 100GB 1个月
简介: 近日,阿里巴巴公共数据平台负责人罗金鹏首次对外披露了在阿里中台战略下,如何推动数据中台落地的个中细节,其中OneData的统一数据标准和实时数据分析是核心。

“阿里巴巴正在建设数据中台,统一处理集团近千PB数据,每天被扫描的数据量相当于2千万部高清电影。目前对外服务千万商家与其它生态伙伴,对内服务上万名小二,2015年双十一当天平台调用超过75亿次。”



阿里巴巴公共数据平台负责人 罗金鹏 


4月20日, UBDC全域大数据峰会·2016上,阿里巴巴公共数据平台负责人罗金鹏首次对外披露了在阿里中台战略下,如何推动数据中台落地的个中细节。

 

据悉,中台战略是阿里巴巴于2015年底首次提出。作为阿里中台战略的核心之一——数据中台旨在对内提供数据基础建设和统一的数据服务,对外提供服务商家的数据产品。

 

OneData是阿里数据中台的核心,罗金鹏介绍,OneData体系建立的集团数据公共层,从设计、开发、部署和使用上保障了数据口径的规范和统一,实现数据资产全链路管理,提供标准数据输出。

 

统一数据标准是一项非常复杂的工作,譬如,针对UV这一相同的指标,在统一之前阿里内部竟然有10多种数据定义。据介绍,OneData数据公共层总共对30000多个数据指标进行了口径的规范和统一,梳理后缩减为3000余个。

 

尽管工程浩大,但是此举却为阿里带来了显著的收效。借助于OneData平台实时数据分析能力,在2015年双11当天,淘宝搜索排序中引入实时数据影响因子,实现增收数十亿元,罗金鹏表示。

 

在DT时代,数据暴增对存储计算成本带来很大的挑战。据罗金鹏介绍在没有建设统一的数据公共层时,阿里内部服务器需求量会在5年之后达到现在的100倍之多。而经过数据公共层的统一建设,5年后的服务器需求量相对会节约90%。

 

此外,阿里基于数据中台孵化了一个内部名叫“GProfile”全域用户档案的标签服务。“GProfile”根据用户行为,打上不同的标签,再推荐与买家消费能力和喜好匹配的商品。基于此每个用户在手机淘宝上搜索“连衣裙”,每个人看到的搜索结果都是不一样。

千人千面的个性化服务背后的数据基础就是“GProfile”。据罗金鹏的介绍,目前标签有300多种,如此多的标签,都是为了更精准地定位用户,从而实现更好的用户体验与精准营销。

除对内挖掘数据的价值,用技术驱动和创新内部的业务,阿里数据同时也将数据能力通过产品对外服务。而这一产品即是“生意参谋”,为商家提供多维度的数据服务,帮助商家通过数据分析来进行商业决策。

罗金鹏表示,生意参谋可以用数据化来贯穿到企业管理的整体链路中,包括了,品类管理数据化、营销数据化、品牌数据化以及服务数据化。

据悉到目前为止,生意参谋已经为千万商家服务,月成交额30万元以上的商家中,逾90%在使用生意参谋;月成交金额100万元以上的商家中,逾90%每月登录生意参谋天次达20次以上。

 

在DT时代,数据已经成为推动商业发展的新能源,而数据中台的建设成为新能源能否在阿里巴巴生态中发挥价值的关键。

相关实践学习
阿里云百炼xAnalyticDB PostgreSQL构建AIGC应用
通过该实验体验在阿里云百炼中构建企业专属知识库构建及应用全流程。同时体验使用ADB-PG向量检索引擎提供专属安全存储,保障企业数据隐私安全。
AnalyticDB PostgreSQL 企业智能数据中台:一站式管理数据服务资产
企业在数据仓库之上可构建丰富的数据服务用以支持数据应用及业务场景;ADB PG推出全新企业智能数据平台,用以帮助用户一站式的管理企业数据服务资产,包括创建, 管理,探索, 监控等; 助力企业在现有平台之上快速构建起数据服务资产体系
相关文章
|
2月前
|
数据挖掘 PyTorch TensorFlow
|
1月前
|
机器学习/深度学习 人工智能 搜索推荐
某A保险公司的 数据图表和数据分析
某A保险公司的 数据图表和数据分析
61 0
某A保险公司的 数据图表和数据分析
|
3月前
|
数据采集 DataWorks 数据挖掘
提升数据分析效率:DataWorks在企业级数据治理中的应用
【8月更文第25天】本文将探讨阿里巴巴云的DataWorks平台如何通过建立统一的数据标准、规范以及实现数据质量监控和元数据管理来提高企业的数据分析效率。我们将通过具体的案例研究和技术实践来展示DataWorks如何简化数据处理流程,减少成本,并加速业务决策。
456 54
|
1月前
|
机器学习/深度学习 数据采集 数据可视化
如何理解数据分析及数据的预处理,分析建模,可视化
如何理解数据分析及数据的预处理,分析建模,可视化
52 0
|
2月前
|
机器学习/深度学习 数据挖掘 TensorFlow
🔍揭秘Python数据分析奥秘,TensorFlow助力解锁数据背后的亿万商机
【9月更文挑战第11天】在信息爆炸的时代,数据如沉睡的宝藏,等待发掘。Python以简洁的语法和丰富的库生态成为数据分析的首选,而TensorFlow则为深度学习赋能,助你洞察数据核心,解锁商机。通过Pandas库,我们可以轻松处理结构化数据,进行统计分析和可视化;TensorFlow则能构建复杂的神经网络模型,捕捉非线性关系,提升预测准确性。两者的结合,让你在商业竞争中脱颖而出,把握市场脉搏,释放数据的无限价值。以下是使用Pandas进行简单数据分析的示例:
45 5
|
3月前
|
存储 数据挖掘 数据处理
DataFrame探索之旅:如何一眼洞察数据本质,提升你的数据分析能力?
【8月更文挑战第22天】本文通过电商用户订单数据的案例,展示了如何使用Python的pandas库查看DataFrame信息。首先导入数据并使用`head()`, `columns`, `shape`, `describe()`, 和 `dtypes` 方法来快速概览数据的基本特征。接着,通过对数据进行分组操作计算每位顾客的平均订单金额,以此展示初步数据分析的过程。掌握这些技能对于高效的数据分析至关重要。
41 2
|
3月前
|
数据采集 机器学习/深度学习 算法
"揭秘数据质量自动化的秘密武器:机器学习模型如何精准捕捉数据中的‘隐形陷阱’,让你的数据分析无懈可击?"
【8月更文挑战第20天】随着大数据成为核心资源,数据质量直接影响机器学习模型的准确性和效果。传统的人工审查方法效率低且易错。本文介绍如何运用机器学习自动化评估数据质量,解决缺失值、异常值等问题,提升模型训练效率和预测准确性。通过Python和scikit-learn示例展示了异常值检测的过程,最后强调在自动化评估的同时结合人工审查的重要性。
97 2
|
2月前
|
机器学习/深度学习 数据挖掘 TensorFlow
从数据小白到AI专家:Python数据分析与TensorFlow/PyTorch深度学习的蜕变之路
【9月更文挑战第10天】从数据新手成长为AI专家,需先掌握Python基础语法,并学会使用NumPy和Pandas进行数据分析。接着,通过Matplotlib和Seaborn实现数据可视化,最后利用TensorFlow或PyTorch探索深度学习。这一过程涉及从数据清洗、可视化到构建神经网络的多个步骤,每一步都需不断实践与学习。借助Python的强大功能及各类库的支持,你能逐步解锁数据的深层价值。
67 0
|
3月前
|
数据采集 数据可视化 算法
GitHub星标68K!Python数据分析入门手册带你从数据获取到可视化
Python作为一门优秀的编程语言,近年来受到很多编程爱好者的青睐。一是因为Python本身具有简捷优美、易学易用的特点;二是由于互联网的飞速发展,我们正迎来大数据的时代,而Python 无论是在数据的采集与处理方面,还是在数据分析与可视化方面都有独特的优势。我们可以利用 Python 便捷地开展与数据相关的项目,以很低的学习成本快速完成项目的研究。
|
3月前
|
供应链 数据可视化 数据挖掘
【python】python省市水资源数据分析可视化(源码+数据)【独一无二】
【python】python省市水资源数据分析可视化(源码+数据)【独一无二】
下一篇
无影云桌面