Python3下机器学习实战KNN代码出现AttributeError: ‘dict’ object has no attribute错误

简介: 出现错误的代码时:result = sorted(classCount.iteritems(), key=operator.

出现错误的代码时:

result = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)

错误显示:

AttributeError: 'dict' object has no attribute 'iteritems'

之所以会出现上述错误是因为python3中已经没有这个属性,直接改为items即可:

result = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True)

知识点补充:

operator.itemgetter函数

operator模块提供的itemgetter函数用于获取对象的哪些维的数据,参数为一些序号(即需要获取的数据在对象中的序号),下面看例子。

a = [1,2,3] 
b=operator.itemgetter(1)      //定义函数b,获取对象的第1个域的值
print(b(a)) 

输出:
2

b=operator.itemgetter(1,0)   //定义函数b,获取对象的第1个域和第0个域的值
print(b(a)) 

输出:
(2, 1)

要注意,operator.itemgetter函数获取的不是值,而是定义了一个函数,通过该函数作用到对象上才能获取值。

字典items()操作方法:

x = {'title':'python web site','url':'www.iplaypy.com'}
print(x.items())

输出:
[(‘url’, ‘www.iplaypy.com’), (‘title’, ‘python web site’)]

从结果中可以看到,items()方法是将字典中的每个项分别做为元组,添加到一个列表中,形成了一个新的列表容器。如果有需要也可以将返回的结果赋值给新变量,这个新的变量就会是一个列表数据类型。

a=x.items()
print(a)

输出:

[(‘url’, ‘www.iplaypy.com’), (‘title’, ‘python web site’)]

print(type(a))

输出:
<\type ‘list’>


参考资料:Python 字典items返回列表

相关文章
|
4月前
|
C++ Python
Python Tricks--- Object Comparisons:“is” vs “==”
Python Tricks--- Object Comparisons:“is” vs “==”
29 1
|
6月前
|
数据处理 Python
【Python】解决tqdm ‘module‘ object is not callable
在使用tqdm库时遇到的“'module' object is not callable”错误,并给出了正确的导入方式以及一些使用tqdm的常见示例。
177 1
|
6月前
|
JSON 数据格式 Python
【python】解决json.dump(字典)时报错Object of type ‘float32‘ is not JSON serializable
在使用json.dump时遇到的“Object of type ‘float32’ is not JSON serializable”错误的方法,通过自定义一个JSON编码器类来处理NumPy类型的数据。
274 1
|
6月前
|
API C++ Python
【Azure 应用服务】Python fastapi Function在Azure中遇见AttributeError异常(AttributeError: 'AsgiMiddleware' object has no attribute 'handle_async')
【Azure 应用服务】Python fastapi Function在Azure中遇见AttributeError异常(AttributeError: 'AsgiMiddleware' object has no attribute 'handle_async')
|
7月前
|
API Python
python属性错误(AttributeError)
【7月更文挑战第13天】
320 10
|
3月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
196 6
|
1月前
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
276 13
机器学习算法的优化与改进:提升模型性能的策略与方法
|
1天前
|
机器学习/深度学习 人工智能 自然语言处理
解锁机器学习的新维度:元学习的算法与应用探秘
元学习作为一个重要的研究领域,正逐渐在多个应用领域展现其潜力。通过理解和应用元学习的基本算法,研究者可以更好地解决在样本不足或任务快速变化的情况下的学习问题。随着研究的深入,元学习有望在人工智能的未来发展中发挥更大的作用。
|
1月前
|
机器学习/深度学习 算法 网络安全
CCS 2024:如何严格衡量机器学习算法的隐私泄露? ETH有了新发现
在2024年CCS会议上,苏黎世联邦理工学院的研究人员提出,当前对机器学习隐私保护措施的评估可能存在严重误导。研究通过LiRA攻击评估了五种经验性隐私保护措施(HAMP、RelaxLoss、SELENA、DFKD和SSL),发现现有方法忽视最脆弱数据点、使用较弱攻击且未与实际差分隐私基线比较。结果表明这些措施在更强攻击下表现不佳,而强大的差分隐私基线则提供了更好的隐私-效用权衡。
53 14
|
2月前
|
算法
PAI下面的gbdt、xgboost、ps-smart 算法如何优化?
设置gbdt 、xgboost等算法的样本和特征的采样率
95 2

热门文章

最新文章

推荐镜像

更多