吴恩达深度学习课程笔记之卷积神经网络基本操作详解

简介: 卷积层CNN中卷积层的作用:CNN中的卷积层,在很多网络结构中会用conv来表示,也就是convolution的缩写。

这里写图片描述

卷积层

CNN中卷积层的作用:

CNN中的卷积层,在很多网络结构中会用conv来表示,也就是convolution的缩写。

卷积层在CNN中扮演着很重要的角色——特征的抽象和提取,这也是CNN区别于传统的ANN或SVM的重要不同。

对于图片而言,图片是一个二维度的数据,我们怎样才能通过学习图片正确的模式来对于一张图片有正确的对于图片分类呢?这个时候,有人就提出了一个观点,我们可以这样,对于所有的像素,全部都连接上一个权值,我们也分很多层,然后最后进行分类,这样也可以,但是对于一张图片来说,像素点太多,参数太多了。然后就有人提出来,我们只看一部分怎么样,就是对于一张图片来说,我们只看一个小窗口就可以了,对于其他的地方,我们也提供类似的小窗口,我们知道,当我们对图片进行卷积的时候,我们可以对图片进行很多操作,比如说图片整体模糊,或者是边缘的提取,卷积操作对于图片来说可以很好的提取到特征,而且通过BP误差的传播,我们可以根据不同任务,得到对于这个任务最好的一个参数,学习出相对于这个任务的最好的卷积核,之所以权值共享的逻辑是:如果说一个卷积核在图片的一小块儿区域可以得到很好的特征,那么在其他的地方,也可以得到很好的特征。


填充(Padding)

valid:也就是不填充。
same:在图像边缘填充,使得输入和输出大小相同。

不采用padding的后果:

  • 边缘信息采样小
  • 输出图像变小

而paddding通常可以保证卷积过程中输入和输出的维度是一样的。它还可以使图像边缘附近的帧对输出的贡献和图像中心附近的帧一样。

假设输入的图像大小为:n*n,过滤器大小为f*f,填充的大小为p,步长为s;

那么,输出的大小为

①假设步长stride大小为1,并且没有填充,则输出为:

(nf+1)(nf+1)

②假设步长stride大小为1,并且填充的大小为p,则输出为:

(n+2pf+1)(n+2pf+1)

根据以上公式可以看出,加入我们没有填充的话,输出的大小会小于输入的大小,然而在实际中,我们往往希望,输出的大小能够与输入的大小相同,于是,我们可以得到下面这个等式:

(n+2pf+1)(n+2pf+1)=nn

解得:

p=f12

由以上式子可知,当f为奇数时,填充的大小也随之确定。也许你会问,难道过滤器的大小一定要为奇数吗?理论上,f为偶数也是可以的。但是在实际工程应用中,f一般会取奇数(很多情况下取3),原因如下:

  • 若为偶数,则有可能是不对称填充,显然我们不喜欢这样的操作
  • 奇数有中心像素点,便于我们定位过滤器的位置

步长(Stride)

③假设步长大小为s,并且填充的大小为p,则输出为:

n+2pfs+1

需要注意的是,当结果不为整数时,我们一般采取下取整操作!


池化(Pooling):卷积层是对图像的一个邻域进行卷积得到图像的邻域特征,池化层就是使用pooling技术将小邻域内的特征点整合得到新的特征。

优点:

  • 显著减少参数数量
  • 池化单元具有平移不变性

在实际中经常使用的是最大池化。


卷积神经网络减少参数的手段:

1)稀疏连接

一般认为人对外界的认知是从局部到全局的,而图像的空间联系也是局部的像素联系较为紧密,而距离较远的像素相关性则较弱。因而,每个神经元其实没有必要对全局图像进行感知,只需要对局部进行感知,然后在更高层将局部的信息综合起来就得到了全局的信息。网络部分连通的思想,也是受启发于生物学里面的视觉系统结构。视觉皮层的神经元就是局部接受信息的(即这些神经元只响应某些特定区域的刺激)。如下图所示:左图为全连接,右图为稀疏连接。

这里写图片描述

在上右图中,假如每个神经元只和10×10个像素值相连,那么权值数据为1000000×100个参数,减少为原来的千分之一。而那10×10个像素值对应的10×10个参数,其实就相当于卷积操作。

2)参数共享

但其实这样的话参数仍然过多,那么就启动第二级神器,即权值共享。在上面的局部连接中,每个神经元都对应100个参数,一共1000000个神经元,如果这1000000个神经元的100个参数都是相等的,那么参数数目就变为100了。

怎么理解权值共享呢?我们可以这100个参数(也就是卷积操作)看成是提取特征的方式,该方式与位置无关。这其中隐含的原理则是:图像的一部分的统计特性与其他部分是一样的。这也意味着我们在这一部分学习的特征也能用在另一部分上,所以对于这个图像上的所有位置,我们都能使用同样的学习特征。

更直观一些,当从一个大尺寸图像中随机选取一小块,比如说 8×8 作为样本,并且从这个小块样本中学习到了一些特征,这时我们可以把从这个 8×8 样本中学习到的特征作为探测器,应用到这个图像的任意地方中去。特别是,我们可以用从 8×8 样本中所学习到的特征跟原本的大尺寸图像作卷积,从而对这个大尺寸图像上的任一位置获得一个不同特征的激活值。

如下图所示,展示了一个33的卷积核在55的图像上做卷积的过程。每个卷积都是一种特征提取方式,就像一个筛子,将图像中符合条件(激活值越大越符合条件)的部分筛选出来。

这里写图片描述


参考文献:

技术向:一文读懂卷积神经网络CNN

卷积神经网络工作原理直观的解释?

相关文章
|
6天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的自适应神经网络:原理与应用
【8月更文挑战第14天】在深度学习领域,自适应神经网络作为一种新兴技术,正逐渐改变我们处理数据和解决问题的方式。这种网络通过动态调整其结构和参数来适应输入数据的分布和特征,从而在无需人工干预的情况下实现最优性能。本文将深入探讨自适应神经网络的工作原理、关键技术及其在多个领域的实际应用,旨在为读者提供一个全面的视角,理解这一技术如何推动深度学习向更高效、更智能的方向发展。
|
4天前
|
机器学习/深度学习 自然语言处理 数据安全/隐私保护
深度学习中的艺术与科学:探索神经网络的奥秘
本文将带您走进深度学习的奇妙世界,一探神经网络背后的科学原理和艺术创造。我们将从基础概念出发,逐步深入到模型训练的技巧,以及如何应对过拟合等常见问题。通过实例分析,我们将展示深度学习技术在图像识别和自然语言处理等领域的应用,并讨论其在未来科技发展中的潜在影响。让我们一同解锁深度学习的力量,发现它如何塑造我们的数字世界。
|
5天前
|
机器学习/深度学习 传感器 自然语言处理
深度学习的魔法:如何用神经网络解锁数据的秘密
在这个数字信息爆炸的时代,深度学习技术如同一把钥匙,揭开了数据隐藏的层层秘密。本文将深入浅出地探讨深度学习的核心概念、关键技术和实际应用,带领读者领略这一领域的奥秘与魅力。通过生动的比喻和直观的解释,我们将一起走进神经网络的世界,看看这些由数据驱动的“大脑”是如何学习和成长的。无论你是科技爱好者还是行业新手,这篇文章都将为你打开一扇通往未来的大门。
|
2天前
|
机器学习/深度学习 人工智能 PyTorch
【深度学习】使用PyTorch构建神经网络:深度学习实战指南
PyTorch是一个开源的Python机器学习库,特别专注于深度学习领域。它由Facebook的AI研究团队开发并维护,因其灵活的架构、动态计算图以及在科研和工业界的广泛支持而受到青睐。PyTorch提供了强大的GPU加速能力,使得在处理大规模数据集和复杂模型时效率极高。
113 59
|
2天前
|
机器学习/深度学习 人工智能 自然语言处理
卷积神经网络(CNN):视觉识别的革命先锋
卷积神经网络(CNN)作为人工智能领域的一颗璀璨明珠,在计算机视觉中发挥着核心作用。CNN的发展历程展现了从生物学灵感到技术创新的转变,历经LeNet-5至AlexNet、VGGNet、ResNet等里程碑式的进步。其独特结构包括卷积层、池化层及全连接层,能够层层递进地提取特征并作出决策。CNN不仅在图像分类、目标检测等领域表现卓越,还在人脸识别、医学影像分析等方面展现出巨大潜力。尽管存在局限性,如对序列数据处理能力有限及解释性问题,但通过引入注意力机制、自监督学习等方法,CNN将持续演进,引领人工智能技术走向更加精彩的未来。
29 2
|
5天前
|
机器学习/深度学习 算法 自动驾驶
深度学习的奥秘:探索神经网络的黑盒子
深度学习技术如同一扇打开未知世界的大门,其背后的复杂算法和庞大数据让许多人感到好奇又困惑。本文以通俗易懂的语言,逐步揭开深度学习的神秘面纱,从基础概念到实际应用,引导读者理解并欣赏这一技术的奇妙之处。
15 1
|
5天前
|
机器学习/深度学习 算法
深度学习中的艺术与科学:探索神经网络的奥秘
本文以浅显易懂的方式介绍了深度学习的基本概念,并逐步深入到其背后的复杂数学原理。通过生动的比喻和直观的解释,文章揭示了深度学习如何模仿人脑处理信息,并探讨了它在图像识别、语音处理等领域的应用。同时,文章还讨论了深度学习面临的挑战和未来的发展方向,旨在激发读者对这一前沿技术的兴趣和思考。
|
8天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习的魔法:如何用神经网络改变未来
在这篇文章中,我们将探索深度学习如何像魔法一样,通过神经网络改变我们的未来。我们将从基础概念出发,逐步深入到深度学习的应用和挑战,最后展望其对未来的影响。让我们一起揭开深度学习的神秘面纱,看看这个强大的工具如何塑造我们的世界。
|
9天前
|
机器学习/深度学习 人工智能 算法
深度学习的奥秘:探索神经网络的核心原理
深度学习,一个听起来既神秘又充满魔力的词汇,它如同一扇通往未知世界的大门,背后隐藏着无尽的智慧与可能。本文将以一种通俗易懂的方式,带领读者走进深度学习的世界,探索那些构成神经网络核心的基本原理。我们将从最初的感知机模型出发,逐步深入到复杂的多层网络结构,揭示数据如何在这些网络中流动、变化,最终实现智能决策的过程。通过这篇文章,你将了解到深度学习不仅仅是技术的堆砌,更是对自然界智慧的一种模仿与致敬。
19 1
|
1天前
|
机器学习/深度学习 数据采集 算法
一文搞懂 卷积神经网络 批归一化 丢弃法
这篇文章详细介绍了卷积神经网络中的批归一化(Batch Normalization)和丢弃法(Dropout),包括它们的计算过程、作用、优势以及如何在飞桨框架中应用这些技术来提高模型的稳定性和泛化能力,并提供了网络结构定义和参数计算的示例。
8 0

热门文章

最新文章