日志采集框架Flume以及Flume的安装部署(一个分布式、可靠、和高可用的海量日志采集、聚合和传输的系统)

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
简介: Flume支持众多的source和sink类型,详细手册可参考官方文档,更多source和sink组件 http://flume.apache.org/FlumeUserGuide.html Flume官网入门指南:  1:Flume的概述和介绍: (1):Flume是一个分布式、可靠、和高可用的海量日志采集、聚合和传输的系统。

 Flume支持众多的source和sink类型,详细手册可参考官方文档,更多source和sink组件

http://flume.apache.org/FlumeUserGuide.html

Flume官网入门指南:


 1:Flume的概述和介绍:

(1):Flume是一个分布式、可靠、和高可用的海量日志采集、聚合和传输的系统。
(2):Flume可以采集文件,socket数据包等各种形式源数据,又可以将采集到的数据输出到HDFS、hbase、hive、kafka等众多外部存储系统中
(3):一般的采集需求,通过对flume的简单配置即可实现
(4):Flume针对特殊场景也具备良好的自定义扩展能力,因此,flume可以适用于大部分的日常数据采集场景

2:Flume的运行机制:

(1):Flume分布式系统中最核心的角色是agent,flume采集系统就是由一个个agent所连接起来形成。

(2):每一个agent相当于一个数据传递员,内部有三个组件:
    a):Source:采集源,用于跟数据源对接,以获取数据。
    b):Sink:下沉地,采集数据的传送目的,用于往下一级agent传递数据或者往最终存储系统传递数据。
    c):Channel:angent内部的数据传输通道,用于从source将数据传递到sink。

注意:Source 到 Channel 到 Sink之间传递数据的形式是Event事件;Event事件是一个数据流单元。

 下面介绍单个Agent的fulme数据采集示意图:

 多级agent之间串联示意图:

 3:Flume的安装部署:

(1)、Flume的安装非常简单,只需要解压即可,当然,前提是已有hadoop环境:
  a):上传安装包到数据源所在节点上,上传过程省略。
  b):然后解压  tar -zxvf apache-flume-1.6.0-bin.tar.gz;

    [root@master package]# tar -zxvf apache-flume-1.6.0-bin.tar.gz -C /home/hadoop/
  c):然后进入flume的目录,修改conf下的flume-env.sh,在里面配置JAVA_HOME;(由于conf目录下面是 flume-env.sh.template,所以我复制一个flume-env.sh,然后进行修改JAVA_HOME

    [root@master conf]# cp flume-env.sh.template flume-env.sh

    [root@master conf]# vim flume-env.sh

    然后将#注释去掉,加上自己的JAVA_HOME:export JAVA_HOME=/home/hadoop/jdk1.7.0_65
(2)、根据数据采集的需求配置采集方案,描述在配置文件中(文件名可任意自定义);
(3)、指定采集方案配置文件,在相应的节点上启动flume agent;

(4)、可以先用一个最简单的例子来测试一下程序环境是否正常(在flume的conf目录下新建一个文件);

4:部署安装好,可以开始配置采集方案(这里是一个简单的采集方案配置的使用,从网络端口接收数据,然后下沉到logger), 然后需要配置一个文件,这个采集配置文件名称,netcat-logger.conf,采集配置文件netcat-logger.conf的内容如下所示:

 1 # example.conf: A single-node Flume configuration
 2 
 3 # Name the components on this agent
 4 #定义这个agent中各组件的名字,给那三个组件sources,sinks,channels取个名字,是一个逻辑代号:
 5 #a1是agent的代表。
 6 a1.sources = r1
 7 a1.sinks = k1
 8 a1.channels = c1
 9 
10 # Describe/configure the source 描述和配置source组件:r1
11 #类型, 从网络端口接收数据,在本机启动, 所以localhost, type=spoolDir采集目录源,目录里有就采
12 #type是类型,是采集源的具体实现,这里是接受网络端口的,netcat可以从一个网络端口接受数据的。netcat在linux里的程序就是nc,可以学习一下。
13 #bind绑定本机localhost。port端口号为44444。
14 
15 a1.sources.r1.type = netcat
16 a1.sources.r1.bind = localhost
17 a1.sources.r1.port = 44444
18 
19 # Describe the sink 描述和配置sink组件:k1
20 #type,下沉类型,使用logger,将数据打印到屏幕上面。
21 a1.sinks.k1.type = logger
22 
23 # Use a channel which buffers events in memory 描述和配置channel组件,此处使用是内存缓存的方式
24 #type类型是内存memory。
25 #下沉的时候是一批一批的, 下沉的时候是一个个eventChannel参数解释:
26 #capacity:默认该通道中最大的可以存储的event数量,1000是代表1000条数据。
27 #trasactionCapacity:每次最大可以从source中拿到或者送到sink中的event数量。
28 a1.channels.c1.type = memory
29 a1.channels.c1.capacity = 1000
30 a1.channels.c1.transactionCapacity = 100
31 
32 # Bind the source and sink to the channel 描述和配置source  channel   sink之间的连接关系
33 #将sources和sinks绑定到channel上面。
34 a1.sources.r1.channels = c1
35 a1.sinks.k1.channel = c1

下面在flume的conf目录下面编辑这个文件netcat-logger.conf:

[root@master conf]# vim netcat-logger.conf

 启动agent去采集数据,然后可以进行启动了,启动命令如下所示:

bin/flume-ng agent -c conf -f conf/netcat-logger.conf -n a1  -Dflume.root.logger=INFO,console

  -c conf   指定flume自身的配置文件所在目录

  -f conf/netcat-logger.con  指定我们所描述的采集方案

  -n a1  指定我们这个agent的名字

1 启动命令:
2 #告诉flum启动一个agent。
3 #--conf conf指定配置参数,。
4 #conf/netcat-logger.conf指定采集方案的那个文件(自命名)。
5 #--name a1:agent的名字,即agent的名字为a1。
6 #-Dflume.root.logger=INFO,console给log4j传递的参数。
7 $ bin/flume-ng agent --conf conf --conf-file conf/netcat-logger.conf --name a1 -Dflume.root.logger=INFO,console

 演示如下所示:

 启动的信息如下所示,可以启动到前台,也可以启动到后台:

 1 [root@master apache-flume-1.6.0-bin]# bin/flume-ng agent --conf conf --conf-file conf/netcat-logger.conf --name a1 -Dflume.root.logger=INFO,console
 2 Info: Sourcing environment configuration script /home/hadoop/apache-flume-1.6.0-bin/conf/flume-env.sh
 3 Info: Including Hadoop libraries found via (/home/hadoop/hadoop-2.4.1/bin/hadoop) for HDFS access
 4 Info: Excluding /home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/slf4j-api-1.7.5.jar from classpath
 5 Info: Excluding /home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/slf4j-log4j12-1.7.5.jar from classpath
 6 Info: Including Hive libraries found via () for Hive access
 7 + exec /home/hadoop/jdk1.7.0_65/bin/java -Xmx20m -Dflume.root.logger=INFO,console -cp '/home/hadoop/apache-flume-1.6.0-bin/conf:/home/hadoop/apache-flume-1.6.0-bin/lib/*:/home/hadoop/hadoop-2.4.1/etc/hadoop:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/activation-1.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/asm-3.2.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/avro-1.7.4.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/commons-beanutils-1.7.0.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/commons-beanutils-core-1.8.0.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/commons-cli-1.2.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/commons-codec-1.4.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/commons-collections-3.2.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/commons-compress-1.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/commons-configuration-1.6.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/commons-digester-1.8.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/commons-el-1.0.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/commons-httpclient-3.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/commons-io-2.4.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/commons-lang-2.6.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/commons-logging-1.1.3.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/commons-math3-3.1.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/commons-net-3.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/guava-11.0.2.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/hadoop-annotations-2.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/hadoop-auth-2.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/httpclient-4.2.5.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/httpcore-4.2.5.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/jackson-core-asl-1.8.8.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/jackson-jaxrs-1.8.8.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/jackson-mapper-asl-1.8.8.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/jackson-xc-1.8.8.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/jasper-compiler-5.5.23.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/jasper-runtime-5.5.23.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/java-xmlbuilder-0.4.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/jaxb-api-2.2.2.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/jaxb-impl-2.2.3-1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/jersey-core-1.9.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/jersey-json-1.9.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/jersey-server-1.9.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/jets3t-0.9.0.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/jettison-1.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/jetty-6.1.26.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/jetty-util-6.1.26.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/jsch-0.1.42.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/jsp-api-2.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/jsr305-1.3.9.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/junit-4.8.2.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/log4j-1.2.17.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/mockito-all-1.8.5.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/netty-3.6.2.Final.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/paranamer-2.3.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/protobuf-java-2.5.0.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/servlet-api-2.5.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/snappy-java-1.0.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/stax-api-1.0-2.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/xmlenc-0.52.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/xz-1.0.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/zookeeper-3.4.5.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/hadoop-common-2.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/hadoop-common-2.4.1-tests.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/hadoop-nfs-2.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/jdiff:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib:/home/hadoop/hadoop-2.4.1/share/hadoop/common/sources:/home/hadoop/hadoop-2.4.1/share/hadoop/common/templates:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/lib/asm-3.2.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/lib/commons-cli-1.2.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/lib/commons-codec-1.4.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/lib/commons-daemon-1.0.13.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/lib/commons-el-1.0.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/lib/commons-io-2.4.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/lib/commons-lang-2.6.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/lib/commons-logging-1.1.3.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/lib/guava-11.0.2.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/lib/jackson-core-asl-1.8.8.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/lib/jackson-mapper-asl-1.8.8.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/lib/jasper-runtime-5.5.23.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/lib/jersey-core-1.9.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/lib/jersey-server-1.9.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/lib/jetty-6.1.26.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/lib/jetty-util-6.1.26.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/lib/jsp-api-2.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/lib/jsr305-1.3.9.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/lib/log4j-1.2.17.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/lib/netty-3.6.2.Final.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/lib/protobuf-java-2.5.0.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/lib/servlet-api-2.5.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/lib/xmlenc-0.52.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/hadoop-hdfs-2.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/hadoop-hdfs-2.4.1-tests.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/hadoop-hdfs-nfs-2.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/jdiff:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/lib:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/sources:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/templates:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/webapps:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/activation-1.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/aopalliance-1.0.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/asm-3.2.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/commons-cli-1.2.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/commons-codec-1.4.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/commons-collections-3.2.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/commons-compress-1.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/commons-httpclient-3.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/commons-io-2.4.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/commons-lang-2.6.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/commons-logging-1.1.3.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/guava-11.0.2.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/guice-3.0.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/guice-servlet-3.0.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/jackson-core-asl-1.8.8.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/jackson-jaxrs-1.8.8.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/jackson-mapper-asl-1.8.8.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/jackson-xc-1.8.8.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/javax.inject-1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/jaxb-api-2.2.2.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/jaxb-impl-2.2.3-1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/jersey-client-1.9.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/jersey-core-1.9.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/jersey-guice-1.9.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/jersey-json-1.9.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/jersey-server-1.9.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/jettison-1.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/jetty-6.1.26.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/jetty-util-6.1.26.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/jline-0.9.94.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/jsr305-1.3.9.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/leveldbjni-all-1.8.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/log4j-1.2.17.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/protobuf-java-2.5.0.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/servlet-api-2.5.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/stax-api-1.0-2.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/xz-1.0.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/zookeeper-3.4.5.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/hadoop-yarn-api-2.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/hadoop-yarn-applications-distributedshell-2.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/hadoop-yarn-applications-unmanaged-am-launcher-2.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/hadoop-yarn-client-2.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/hadoop-yarn-common-2.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/hadoop-yarn-server-applicationhistoryservice-2.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/hadoop-yarn-server-common-2.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/hadoop-yarn-server-nodemanager-2.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/hadoop-yarn-server-resourcemanager-2.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/hadoop-yarn-server-tests-2.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/hadoop-yarn-server-web-proxy-2.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/sources:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/test:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/lib/aopalliance-1.0.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/lib/asm-3.2.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/lib/avro-1.7.4.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/lib/commons-compress-1.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/lib/commons-io-2.4.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/lib/guice-3.0.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/lib/guice-servlet-3.0.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/lib/hadoop-annotations-2.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/lib/hamcrest-core-1.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/lib/jackson-core-asl-1.8.8.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/lib/jackson-mapper-asl-1.8.8.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/lib/javax.inject-1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/lib/jersey-core-1.9.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/lib/jersey-guice-1.9.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/lib/jersey-server-1.9.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/lib/junit-4.10.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/lib/log4j-1.2.17.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/lib/netty-3.6.2.Final.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/lib/paranamer-2.3.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/lib/protobuf-java-2.5.0.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/lib/snappy-java-1.0.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/lib/xz-1.0.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/hadoop-mapreduce-client-app-2.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/hadoop-mapreduce-client-common-2.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/hadoop-mapreduce-client-core-2.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/hadoop-mapreduce-client-hs-2.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/hadoop-mapreduce-client-hs-plugins-2.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/hadoop-mapreduce-client-jobclient-2.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/hadoop-mapreduce-client-jobclient-2.4.1-tests.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/hadoop-mapreduce-client-shuffle-2.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/lib:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/lib-examples:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/sources:/home/hadoop/hadoop-2.4.1/contrib/capacity-scheduler/*.jar:/lib/*' -Djava.library.path=:/home/hadoop/hadoop-2.4.1/lib/native org.apache.flume.node.Application --conf-file conf/netcat-logger.conf --name a1
 8 2017-12-12 19:59:37,108 (lifecycleSupervisor-1-0) [INFO - org.apache.flume.node.PollingPropertiesFileConfigurationProvider.start(PollingPropertiesFileConfigurationProvider.java:61)] Configuration provider starting
 9 2017-12-12 19:59:37,130 (conf-file-poller-0) [INFO - org.apache.flume.node.PollingPropertiesFileConfigurationProvider$FileWatcherRunnable.run(PollingPropertiesFileConfigurationProvider.java:133)] Reloading configuration file:conf/netcat-logger.conf
10 2017-12-12 19:59:37,142 (conf-file-poller-0) [INFO - org.apache.flume.conf.FlumeConfiguration$AgentConfiguration.addProperty(FlumeConfiguration.java:931)] Added sinks: k1 Agent: a1
11 2017-12-12 19:59:37,143 (conf-file-poller-0) [INFO - org.apache.flume.conf.FlumeConfiguration$AgentConfiguration.addProperty(FlumeConfiguration.java:1017)] Processing:k1
12 2017-12-12 19:59:37,143 (conf-file-poller-0) [INFO - org.apache.flume.conf.FlumeConfiguration$AgentConfiguration.addProperty(FlumeConfiguration.java:1017)] Processing:k1
13 2017-12-12 19:59:37,157 (conf-file-poller-0) [INFO - org.apache.flume.conf.FlumeConfiguration.validateConfiguration(FlumeConfiguration.java:141)] Post-validation flume configuration contains configuration for agents: [a1]
14 2017-12-12 19:59:37,158 (conf-file-poller-0) [INFO - org.apache.flume.node.AbstractConfigurationProvider.loadChannels(AbstractConfigurationProvider.java:145)] Creating channels
15 2017-12-12 19:59:37,166 (conf-file-poller-0) [INFO - org.apache.flume.channel.DefaultChannelFactory.create(DefaultChannelFactory.java:42)] Creating instance of channel c1 type memory
16 2017-12-12 19:59:37,172 (conf-file-poller-0) [INFO - org.apache.flume.node.AbstractConfigurationProvider.loadChannels(AbstractConfigurationProvider.java:200)] Created channel c1
17 2017-12-12 19:59:37,174 (conf-file-poller-0) [INFO - org.apache.flume.source.DefaultSourceFactory.create(DefaultSourceFactory.java:41)] Creating instance of source r1, type netcat
18 2017-12-12 19:59:37,189 (conf-file-poller-0) [INFO - org.apache.flume.sink.DefaultSinkFactory.create(DefaultSinkFactory.java:42)] Creating instance of sink: k1, type: logger
19 2017-12-12 19:59:37,192 (conf-file-poller-0) [INFO - org.apache.flume.node.AbstractConfigurationProvider.getConfiguration(AbstractConfigurationProvider.java:114)] Channel c1 connected to [r1, k1]
20 2017-12-12 19:59:37,200 (conf-file-poller-0) [INFO - org.apache.flume.node.Application.startAllComponents(Application.java:138)] Starting new configuration:{ sourceRunners:{r1=EventDrivenSourceRunner: { source:org.apache.flume.source.NetcatSource{name:r1,state:IDLE} }} sinkRunners:{k1=SinkRunner: { policy:org.apache.flume.sink.DefaultSinkProcessor@1ce79b8 counterGroup:{ name:null counters:{} } }} channels:{c1=org.apache.flume.channel.MemoryChannel{name: c1}} }
21 2017-12-12 19:59:37,210 (conf-file-poller-0) [INFO - org.apache.flume.node.Application.startAllComponents(Application.java:145)] Starting Channel c1
22 2017-12-12 19:59:37,371 (lifecycleSupervisor-1-0) [INFO - org.apache.flume.instrumentation.MonitoredCounterGroup.register(MonitoredCounterGroup.java:120)] Monitored counter group for type: CHANNEL, name: c1: Successfully registered new MBean.
23 2017-12-12 19:59:37,372 (lifecycleSupervisor-1-0) [INFO - org.apache.flume.instrumentation.MonitoredCounterGroup.start(MonitoredCounterGroup.java:96)] Component type: CHANNEL, name: c1 started
24 2017-12-12 19:59:37,376 (conf-file-poller-0) [INFO - org.apache.flume.node.Application.startAllComponents(Application.java:173)] Starting Sink k1
25 2017-12-12 19:59:37,376 (conf-file-poller-0) [INFO - org.apache.flume.node.Application.startAllComponents(Application.java:184)] Starting Source r1
26 2017-12-12 19:59:37,377 (lifecycleSupervisor-1-3) [INFO - org.apache.flume.source.NetcatSource.start(NetcatSource.java:150)] Source starting
27 2017-12-12 19:59:37,513 (lifecycleSupervisor-1-3) [INFO - org.apache.flume.source.NetcatSource.start(NetcatSource.java:164)] Created serverSocket:sun.nio.ch.ServerSocketChannelImpl[/127.0.0.1:44444]

 然后可以向这个端口发送数据,就打印出来了,因为这里输出是在console的:

 相当于产生数据的源:[root@master hadoop]# telnetlocalhost 44444

[root@master hadoop]# telnet localhost 44444
bash: telnet: command not found

我的机器没有安装telnet ,所以先安装一下telnet ,如下所示

第一步:检测telnet-server的rpm包是否安装 ???
  [root@localhost ~]# rpm -qa telnet-server
  若无输入内容,则表示没有安装。出于安全考虑telnet-server.rpm是默认没有安装的,而telnet的客户端是标配。即下面的软件是默认安装的。

第二步:若未安装,则安装telnet-server:

   [root@localhost ~]#yum install telnet-server

第三步:3、检测telnet的rpm包是否安装 ???
  [root@localhost ~]# rpm -qa telnet
  telnet-0.17-47.el6_3.1.x86_64

第四步:若未安装,则安装telnet:

  [root@localhost ~]# yum install telnet

第五步:重新启动xinetd守护进程???

  由于telnet服务也是由xinetd守护的,所以安装完telnet-server,要启动telnet服务就必须重新启动xinetd
  [root@locahost ~]#service xinetd restart

完成以上步骤以后可以开始你的命令,如我的:

  [root@master hadoop]# telnet localhost 44444
  Trying ::1...
  telnet: connect to address ::1: Connection refused
  Trying 127.0.0.1...
  Connected to localhost.
  Escape character is '^]'.

解决完上面的错误以后就可以开始测试telnet数据源发送和flume的接受

测试,先要往agent采集监听的端口上发送数据,让agent有数据可采集随便在一个能跟agent节点联网的机器上:telnet localhost 44444

 

然后可以看到flume已经接受到了数据:

如何退出telnet呢???

  首先按ctrl+]退出到telnet > ,然后输入telnet> quit即可退出,记住,quit后面不要加;

 5:flume监视文件夹案例:

 1 监视文件夹
 2 
 3 
 4 第一步:
 5 首先 在flume的conf的目录下创建文件名称为:vim spool-logger.conf的文件。
 6 将下面的内容复制到这个文件里面。
 7 
 8 # Name the components on this agent
 9 a1.sources = r1
10 a1.sinks = k1
11 a1.channels = c1
12 
13 # Describe/configure the source
14 #监听目录,spoolDir指定目录, fileHeader要不要给文件夹前坠名
15 a1.sources.r1.type = spooldir
16 a1.sources.r1.spoolDir = /home/hadoop/flumespool
17 a1.sources.r1.fileHeader = true
18 
19 # Describe the sink
20 a1.sinks.k1.type = logger
21 
22 # Use a channel which buffers events in memory
23 a1.channels.c1.type = memory
24 a1.channels.c1.capacity = 1000
25 a1.channels.c1.transactionCapacity = 100
26 
27 # Bind the source and sink to the channel
28 a1.sources.r1.channels = c1
29 a1.sinks.k1.channel = c1
30 
31 第二步:根据a1.sources.r1.spoolDir = /home/hadoop/flumespool配置的文件路径,创建相应的目录。必须先创建对应的目录,不然报错。java.lang.IllegalStateException: Directory does not exist: /home/hadoop/flumespool
32 [root@master conf]# mkdir  /home/hadoop/flumespool
33 
34 第三步:启动命令:  
35 bin/flume-ng agent -c ./conf -f ./conf/spool-logger.conf -n a1 -Dflume.root.logger=INFO,console
36 
37 第四步:测试: 
38 往/home/hadoop/flumeSpool放文件(mv ././xxxFile /home/hadoop/flumeSpool),但是不要在里面生成文件

6:采集目录到HDFS案例:

(1)采集需求:某服务器的某特定目录下,会不断产生新的文件,每当有新文件出现,就需要把文件采集到HDFS中去
(2)根据需求,首先定义以下3大要素
  a):采集源,即source——监控文件目录 :  spooldir
  b):下沉目标,即sink——HDFS文件系统  :  hdfs sink
  c):source和sink之间的传递通道——channel,可用file channel 也可以用内存channel
(3):
Channel参数解释:

  capacity:默认该通道中最大的可以存储的event数量;

  trasactionCapacity:每次最大可以从source中拿到或者送到sink中的event数量;

  keep-alive:event添加到通道中或者移出的允许时间;

配置文件编写:

 1 #定义三大组件的名称
 2 agent1.sources = source1
 3 agent1.sinks = sink1
 4 agent1.channels = channel1
 5 
 6 # 配置source组件
 7 agent1.sources.source1.type = spooldir
 8 agent1.sources.source1.spoolDir = /home/hadoop/logs/
 9 agent1.sources.source1.fileHeader = false
10 
11 #配置拦截器
12 agent1.sources.source1.interceptors = i1
13 agent1.sources.source1.interceptors.i1.type = host
14 agent1.sources.source1.interceptors.i1.hostHeader = hostname
15 
16 # 配置sink组件
17 agent1.sinks.sink1.type = hdfs
18 agent1.sinks.sink1.hdfs.path =hdfs://master:9000/weblog/flume-collection/%y-%m-%d/%H-%M
19 agent1.sinks.sink1.hdfs.filePrefix = access_log
20 agent1.sinks.sink1.hdfs.maxOpenFiles = 5000
21 agent1.sinks.sink1.hdfs.batchSize= 100
22 agent1.sinks.sink1.hdfs.fileType = DataStream
23 agent1.sinks.sink1.hdfs.writeFormat =Text
24 agent1.sinks.sink1.hdfs.rollSize = 102400
25 agent1.sinks.sink1.hdfs.rollCount = 1000000
26 agent1.sinks.sink1.hdfs.rollInterval = 60
27 #agent1.sinks.sink1.hdfs.round = true
28 #agent1.sinks.sink1.hdfs.roundValue = 10
29 #agent1.sinks.sink1.hdfs.roundUnit = minute
30 agent1.sinks.sink1.hdfs.useLocalTimeStamp = true
31 # Use a channel which buffers events in memory
32 agent1.channels.channel1.type = memory
33 agent1.channels.channel1.keep-alive = 120
34 agent1.channels.channel1.capacity = 500000
35 agent1.channels.channel1.transactionCapacity = 600
36 
37 # Bind the source and sink to the channel
38 agent1.sources.source1.channels = channel1
39 agent1.sinks.sink1.channel = channel1

 7:采集文件到HDFS案例:

(1):采集需求:比如业务系统使用log4j生成的日志,日志内容不断增加,需要把追加到日志文件中的数据实时采集到hdfs

(2):根据需求,首先定义以下3大要素

  采集源,即source——监控文件内容更新 :  exec  ‘tail -F file’

  下沉目标,即sink——HDFS文件系统  :  hdfs sink

  Source和sink之间的传递通道——channel,可用file channel 也可以用 内存channel

配置文件编写:

 1 agent1.sources = source1
 2 agent1.sinks = sink1
 3 agent1.channels = channel1
 4 
 5 # Describe/configure tail -F source1
 6 agent1.sources.source1.type = exec
 7 agent1.sources.source1.command = tail -F /home/hadoop/logs/access_log
 8 agent1.sources.source1.channels = channel1
 9 
10 #configure host for source
11 agent1.sources.source1.interceptors = i1
12 agent1.sources.source1.interceptors.i1.type = host
13 agent1.sources.source1.interceptors.i1.hostHeader = hostname
14 
15 # Describe sink1
16 agent1.sinks.sink1.type = hdfs
17 #a1.sinks.k1.channel = c1
18 agent1.sinks.sink1.hdfs.path =hdfs://master:9000/weblog/flume-collection/%y-%m-%d/%H-%M
19 agent1.sinks.sink1.hdfs.filePrefix = access_log
20 agent1.sinks.sink1.hdfs.maxOpenFiles = 5000
21 agent1.sinks.sink1.hdfs.batchSize= 100
22 agent1.sinks.sink1.hdfs.fileType = DataStream
23 agent1.sinks.sink1.hdfs.writeFormat =Text
24 agent1.sinks.sink1.hdfs.rollSize = 102400
25 agent1.sinks.sink1.hdfs.rollCount = 1000000
26 agent1.sinks.sink1.hdfs.rollInterval = 60
27 agent1.sinks.sink1.hdfs.round = true
28 agent1.sinks.sink1.hdfs.roundValue = 10
29 agent1.sinks.sink1.hdfs.roundUnit = minute
30 agent1.sinks.sink1.hdfs.useLocalTimeStamp = true
31 
32 # Use a channel which buffers events in memory
33 agent1.channels.channel1.type = memory
34 agent1.channels.channel1.keep-alive = 120
35 agent1.channels.channel1.capacity = 500000
36 agent1.channels.channel1.transactionCapacity = 600
37 
38 # Bind the source and sink to the channel
39 agent1.sources.source1.channels = channel1
40 agent1.sinks.sink1.channel = channel1

 待续......

相关实践学习
【涂鸦即艺术】基于云应用开发平台CAP部署AI实时生图绘板
【涂鸦即艺术】基于云应用开发平台CAP部署AI实时生图绘板
目录
相关文章
|
4月前
|
监控 Kubernetes Go
日志采集效能跃迁:iLogtail 到 LoongCollector 的全面升级
LoongCollector 在日志场景中实现了全面的重磅升级,从功能、性能、稳定性等各个方面均进行了深度优化和提升,本文我们将对 LoongCollector 的升级进行详细介绍。
414 86
|
2月前
|
数据采集 存储 大数据
大数据之路:阿里巴巴大数据实践——日志采集与数据同步
本资料全面介绍大数据处理技术架构,涵盖数据采集、同步、计算与服务全流程。内容包括Web/App端日志采集方案、数据同步工具DataX与TimeTunnel、离线与实时数仓架构、OneData方法论及元数据管理等核心内容,适用于构建企业级数据平台体系。
|
存储 运维 开发工具
警惕日志采集失败的 6 大经典雷区:从本地管理反模式到 LoongCollector 标准实践
本文探讨了日志管理中的常见反模式及其潜在问题,强调科学的日志管理策略对系统可观测性的重要性。文中分析了6种反模式:copy truncate轮转导致的日志丢失或重复、NAS/OSS存储引发的采集不一致、多进程写入造成的日志混乱、创建文件空洞释放空间的风险、频繁覆盖写带来的数据完整性问题,以及使用vim编辑日志文件导致的重复采集。针对这些问题,文章提供了最佳实践建议,如使用create模式轮转日志、本地磁盘存储、单线程追加写入等方法,以降低日志采集风险,提升系统可靠性。最后总结指出,遵循这些实践可显著提高故障排查效率和系统性能。
633 20
|
3月前
|
存储 运维 开发工具
警惕日志采集失败的 6 大经典雷区:从本地管理反模式到 LoongCollector 标准实践
本文总结了日志管理中的六大反模式及优化建议,涵盖日志轮转、存储选择、并发写入等常见问题,帮助提升日志采集的完整性与系统可观测性,适用于运维及开发人员优化日志管理策略。
108 5
|
1月前
|
存储 缓存 Apache
StarRocks+Paimon 落地阿里日志采集:万亿级实时数据秒级查询
A+流量分析平台是阿里集团统一的全域流量数据分析平台,致力于通过埋点、采集、计算构建流量数据闭环,助力业务提升流量转化。面对万亿级日志数据带来的写入与查询挑战,平台采用Flink+Paimon+StarRocks技术方案,实现高吞吐写入与秒级查询,优化存储成本与扩展性,提升日志分析效率。
236 1
|
4月前
|
存储 缓存 Apache
StarRocks+Paimon 落地阿里日志采集:万亿级实时数据秒级查询
本文介绍了阿里集团A+流量分析平台的日志查询优化方案,针对万亿级日志数据的写入与查询挑战,提出基于Flink、Paimon和StarRocks的技术架构。通过Paimon存储日志数据,结合StarRocks高效计算能力,实现秒级查询性能。具体包括分桶表设计、数据缓存优化及文件大小控制等措施,解决高并发、大数据量下的查询效率问题。最终,日志查询耗时从分钟级降至秒级,显著提升业务响应速度,并为未来更低存储成本、更高性能及更多业务场景覆盖奠定基础。
|
2月前
|
JSON 安全 网络安全
LoongCollector 安全日志接入实践:企业级防火墙场景的日志标准化采集
LoonCollector 是一款轻量级日志采集工具,支持多源安全日志的标准化接入,兼容 Syslog、JSON、CSV 等格式,适用于长亭 WAF、FortiGate、Palo Alto 等主流安全设备。通过灵活配置解析规则,LoonCollector 可将原始日志转换为结构化数据,写入阿里云 SLS 日志库,便于后续查询分析、威胁检测与合规审计,有效降低数据孤岛问题,提升企业安全运营效率。
|
5月前
|
监控 算法 测试技术
突破极限: 高负载场景下的单机300M多行正则日志采集不是梦
在当今数字化时代,日志数据已成为企业 IT 运营和业务分析的关键资源。然而,随着业务规模的扩大和系统复杂度的提升,日志数据的体量呈现爆发式增长,给日志采集和处理系统带来了巨大挑战。
484 99
|
4月前
|
消息中间件 存储 JSON
日志采集 Agent 性能大比拼——LoongCollector 性能深度测评
为了展现 LoongCollector 的卓越性能,本文通过纵向(LoongCollector 与 iLogtail 产品升级对比)和横向(LoongCollector 与其他开源日志采集 Agent 对比)两方面对比,深度测评不同采集 Agent 在常见的日志采集场景下的性能。
574 33
|
2月前
|
存储
WGLOG日志管理系统可以采集网络设备的日志吗
WGLOG日志审计系统提供开放接口,支持外部获取日志内容后发送至该接口,实现日志的存储与分析。详情请访问:https://www.wgstart.com/wglog/docs9.html