小白学数据分析----->解析在线平高比

本文涉及的产品
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
全局流量管理 GTM,标准版 1个月
简介: 这是一篇很早的杂文了,当时我记得是看到在线平高比比较好奇,索性就研究了一番,后来很多人对我这种行为很不理解,就是一个简单的在线平高比,有什么可以研究和追问的。但是,其中仔细研究下发现还不是那么简单的。接下来我们解决几个问题。

这是一篇很早的杂文了,当时我记得是看到在线平高比比较好奇,索性就研究了一番,后来很多人对我这种行为很不理解,就是一个简单的在线平高比,有什么可以研究和追问的。但是,其中仔细研究下发现还不是那么简单的。接下来我们解决几个问题。

什么是在线平高比

在线平高比,也有叫做CCU比率的,即平均在线占最高在线比例,公式就是R=ACU/PCU。这个公式看似很简单,大家估计很多人都会使用,那么究竟这个公式要说明什么问题?在解释问题之前简单的把ACU和PCU说明一下,因为很多人还不清楚。

ACU平均同时在线人数

定义

统计当日所有统计时刻中总在线人数的平均值,即总的在线人数的和除以统计时刻数。比如:

在00:00:00————6000人在线

在00:10:00————6600人在线

在00:20:00————6900人在线

总在线人数之和19500人次,3个统计时刻,那么ACU=19500/3=6500人。至于PCU就是这样的统计数据中最大的值。比如上述的数据中PCU=6900。

ACU/PCU的预警值

ACU/PCU的预警值是0.5,也就说在一款游戏中我们能够接受的最低标准是0.5,低于0.5的标准就说明游戏存在比较大的问题。那么为什么必须是0.5?

首先我们来看CCU曲线图

我们都清楚在游戏中一天24小时,晚间是一般游戏的高峰时期,PCU也一般会在晚上出现,当然也有在下午的出现的时候,都不尽相同。这也就意味着一条CCU曲线必然是有很大的起伏和落差的。

CCU曲线绘制的前提是通过对每个统计时刻的数据进行汇总才能得到这条曲线,那么这样现在我们这样来做这条曲线,如下图:

我们看到了橘黄色的部分其实就是这一天所有统计时刻的人数总和,其实也就是橘黄色部分的面积,这是一个不规整的图形,显然如果我们要去计算这个图形的面积只能通过微积分解决(这也是微积分的定义和来源)。

那么说的这些和ACU有什么关系?

如我们所定义的,ACU是平均同时在线人数,是总人数/总的统计时刻,ACU的出现等于说把这个不规整的图形变成了一个长方形,长是统计的时刻,宽是ACU的值。

可以看到我们把原来不规整的图形变成了一个完整的长方形,ACU作为了基准线,那些在基准线以上的面积补充到了基准线以下的部分,从而构成了这个长方形。

至此,我们就可以开始解释为什么是0.5了。原因其实很简单,如果出现在了ACU基准线以上的部分越多,那么整体上的PCU表现就越好,进而我们也就发现了在24小时内玩家的上线活跃度是提升的,增高的。

但是实际当中情况不是这样的,更多的时候其实是一段时间走高的,比如晚上7点-12点这段时间的数据时走高的,这是PCU缓慢形成的时间区间。而同时我们在计算ACU时,取的是平均值,PCU拉的越高,就意味着这形成这一峰值所需要的时间是很长的(一般不会出现瞬间形成PCU),换句话形成PCU,得有一个缓慢上升的过程,但是我们希望这个上升想斜坡长,陡,这样也以为着活跃的用户很多。

然而如果我们发现这个比值已经低于0.5了,那么也就意味着:

PCU形成的不明显,波峰被稀释掉了;

关键时期的人气没有得到提升;

游戏产品的生命周期进入衰退阶段(长期0.5以下);

突发情况造成。

ACU/PCU能干什么?

刚才已经说了这个指标低于0.5时的分析情况,那也是这个指标的用途所在,补充还有几点:

我们看到了ACU是经过计算的平均值,相比PCU而言,其变化幅度是相对比PCU缓慢的,进而ACU变化的缓慢,PCU变化是很迅速的,因为PCU容易受到很多因素的影响:

比如某个新活动;

新版本的更新;

小号泛滥;

事件营销。

进而我们可以推断出,一般情况下这条曲线是不会剧烈的变化(因为不受影响的情况下PCU波动也是相对稳定的),但是如果有了以上的因素刺激,那么这条曲线变化很剧烈。这样很容易就能知道一些我们想要的结果,利于我们分析,比如

游戏游戏粘性是否下降;

游戏活动分析;

版本更新分析;

活动更新分析;

工作室小号情况参考。

总的来说,虽然只是一个比值,但是其背后的只是和内容还是很多的,这需要我们去分析和把握。

 

相关文章
|
5月前
|
存储 数据挖掘 OLAP
阿里云 EMR Serverless StarRocks OLAP 数据分析场景解析
阿里云 E-MapReduce Serverless StarRocks 版是阿里云提供的 Serverless StarRocks 全托管服务,提供高性能、全场景、极速统一的数据分析体验,具备开箱即用、弹性扩展、监控管理、慢 SQL 诊断分析等全生命周期能力。内核 100% 兼容 StarRocks,性能比传统 OLAP 引擎提升 3-5 倍,助力企业高效构建大数据应用。本篇文章对阿里云EMR Serverless StarRocks OLAP 数据分析场景进行解析、存算分离架构升级以及 Trino 兼容,无缝替换介绍。
19219 12
|
4月前
|
机器学习/深度学习 搜索推荐 数据挖掘
【深度解析】超越RMSE和MSE:揭秘更多机器学习模型性能指标,助你成为数据分析高手!
【8月更文挑战第17天】本文探讨机器学习模型评估中的关键性能指标。从均方误差(MSE)和均方根误差(RMSE)入手,这两种指标对较大预测偏差敏感,适用于回归任务。通过示例代码展示如何计算这些指标及其它如平均绝对误差(MAE)和决定系数(R²)。此外,文章还介绍了分类任务中的准确率、精确率、召回率和F1分数,并通过实例说明这些指标的计算方法。最后,强调根据应用场景选择合适的性能指标的重要性。
613 0
|
5月前
|
数据采集 机器学习/深度学习 数据可视化
完整的Python数据分析流程案例解析-数据科学项目实战
【7月更文挑战第5天】这是一个Python数据分析项目的概览,涵盖了从CSV数据加载到模型评估的步骤:获取数据、预处理(处理缺失值和异常值、转换数据)、数据探索(可视化和统计分析)、模型选择(线性回归)、训练与评估、优化,以及结果的可视化和解释。此流程展示了理论与实践的结合在解决实际问题中的应用。
121 1
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
🔬技术宅必看!AI Prompt深度解析,商业数据分析的科学魔法
【8月更文挑战第1天】在快速发展的科技领域中, AI Prompt 正革新商业数据分析方式。它通过自然语言指令, 驱动 AI 模型实现数据洞察。本文探讨 AI Prompt 的定义、原理及其在商业分析中的应用。**最佳实践包括**: 精准设计 Prompt 以确保清晰具体的指令; 结合领域知识优化 Prompt, 提升分析准确性; 采用迭代法, 根据反馈持续改进模型性能。掌握 AI Prompt 技术, 不仅提高效率, 更能洞察商机, 创造价值。
146 0
|
5月前
|
运维 数据挖掘 Serverless
深度解析阿里云EMR Serverless StarRocks在OLAP数据分析中的应用场景
阿里云EMR Serverless StarRocks作为一款高性能、全场景覆盖、全托管免运维的OLAP分析引擎,在企业数据分析领域展现出了强大的竞争力和广泛的应用前景。通过其卓越的技术特点、丰富的应用场景以及完善的生态体系支持,EMR Serverless StarRocks正逐步成为企业数字化转型和智能化升级的重要推手。未来随着技术的不断进步和应用场景的不断拓展我们有理由相信EMR Serverless StarRocks将在更多领域发挥重要作用为企业创造更大的价值。
|
5月前
|
监控 数据可视化 数据挖掘
ERP系统中的数据分析与决策支持解析
【7月更文挑战第25天】 ERP系统中的数据分析与决策支持解析
414 0
|
7月前
|
数据采集 数据可视化 数据挖掘
利用 DataFrame 进行数据分析:实战案例解析
【5月更文挑战第19天】DataFrame是数据分析利器,本文通过一个销售数据案例展示其使用:读取数据创建DataFrame,计算产品总销量,分析月销售趋势,找出最畅销产品,并进行数据可视化。此外,还提及数据清洗和异常处理。DataFrame为数据处理、分组计算和可视化提供便利,助力高效数据分析。
144 3
|
1月前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
71 2
|
2月前
|
缓存 Java 程序员
Map - LinkedHashSet&Map源码解析
Map - LinkedHashSet&Map源码解析
76 0
|
2月前
|
算法 Java 容器
Map - HashSet & HashMap 源码解析
Map - HashSet & HashMap 源码解析
62 0

推荐镜像

更多
下一篇
DataWorks