Scalaz(9)- typeclass:checking instance abiding the laws

简介:

  在前几篇关于Functor和Applilcative typeclass的讨论中我们自定义了一个类型Configure,Configure类型的定义是这样的:


1 case class Configure[+A](get: A)
 2 object Configure {
 3     implicit val configFunctor = new Functor[Configure] {
 4         def map[A,B](ca: Configure[A])(f: A => B): Configure[B] = Configure(f(ca.get))
 5     }
 6     implicit val configApplicative = new Applicative[Configure] {
 7         def point[A](a: => A) = Configure(a)
 8         def ap[A,B](ca: => Configure[A])(cfab: => Configure[A => B]): Configure[B] = cfab map {fab => fab(ca.get)}
 9     }
10 }

通过定义了Configure类型的Functor和Applicative隐式实例(implicit instance),我们希望Configure类型既是一个Functor也是一个Applicative。那么怎么才能证明这个说法呢?我们只要证明Configure类型的实例能遵循它所代表的typeclass操作定律就行了。Scalaz为大部分typeclass提供了测试程序(scalacheck properties)。在scalaz/scalacheck-binding/src/main/scala/scalaz/scalacheck/scalazProperties.scala里我们可以发现有关functor scalacheck properties:


 1 object functor {
 2     def identity[F[_], X](implicit F: Functor[F], afx: Arbitrary[F[X]], ef: Equal[F[X]]) =
 3       forAll(F.functorLaw.identity[X] _)
 4 
 5     def composite[F[_], X, Y, Z](implicit F: Functor[F], af: Arbitrary[F[X]], axy: Arbitrary[(X => Y)],
 6                                    ayz: Arbitrary[(Y => Z)], ef: Equal[F[Z]]) =
 7       forAll(F.functorLaw.composite[X, Y, Z] _)
 8 
 9     def laws[F[_]](implicit F: Functor[F], af: Arbitrary[F[Int]], axy: Arbitrary[(Int => Int)],
10                    ef: Equal[F[Int]]) = new Properties("functor") {
11       include(invariantFunctor.laws[F])
12       property("identity") = identity[F, Int]
13       property("composite") = composite[F, Int, Int, Int]
14     }
15   }

可以看到:functor.laws[F[_]]主要测试了identity, composite及invariantFunctor的properties。在scalaz/Functor.scala文件中定义了这几条定律:


 1  trait FunctorLaw extends InvariantFunctorLaw {
 2     /** The identity function, lifted, is a no-op. */
 3     def identity[A](fa: F[A])(implicit FA: Equal[F[A]]): Boolean = FA.equal(map(fa)(x => x), fa)
 4 
 5     /**
 6      * A series of maps may be freely rewritten as a single map on a
 7      * composed function.
 8      */
 9     def composite[A, B, C](fa: F[A], f1: A => B, f2: B => C)(implicit FC: Equal[F[C]]): Boolean = FC.equal(map(map(fa)(f1))(f2), map(fa)(f2 compose f1))
10   }
11  。

我们在下面试着对那个Configure类型进行Functor实例和Applicative实例的测试:


 1 import scalaz._
 2 import Scalaz._
 3 import shapeless._
 4 import scalacheck.ScalazProperties._
 5 import scalacheck.ScalazArbitrary._
 6 import scalacheck.ScalaCheckBinding._
 7 import org.scalacheck.{Gen, Arbitrary}
 8 implicit def cofigEqual[A]: Equal[Configure[A]] = Equal.equalA
 9                                                   //> cofigEqual: [A#2921073]=> scalaz#31.Equal#41646[Exercises#29.ex1#59011.Confi
10                                                   //| gure#2921067[A#2921073]]
11 implicit def configArbi[A](implicit a: Arbitrary[A]): Arbitrary[Configure[A]] =
12    a map { b => Configure(b) }                    //> configArbi: [A#2921076](implicit a#2921242: org#15.scalacheck#121951.Arbitra
13                                                   //| ry#122597[A#2921076])org#15.scalacheck#121951.Arbitrary#122597[Exercises#29.
14                                                   //| ex1#59011.Configure#2921067[A#2921076]]

除了需要的import外还必须定义Configure类型的Equal实例以及任意测试数据产生器(test data generator)configArbi[A]。我们先测试Functor属性:


1 functor.laws[Configure].check                     //> 
2 + functor.invariantFunctor.identity: OK, passed 100 tests.
3                                                   //| 
4 + functor.invariantFunctor.composite: OK, passed 100 tests.
5                                                   //| 
6 + functor.identity: OK, passed 100 tests.
7                                                   //| 
8 + functor.composite: OK, passed 100 tests.

成功通过Functor定律测试。

再看看Applicative的scalacheck property:scalaz/scalacheck/scalazProperties.scala


 1  object applicative {
 2     def identity[F[_], X](implicit f: Applicative[F], afx: Arbitrary[F[X]], ef: Equal[F[X]]) =
 3       forAll(f.applicativeLaw.identityAp[X] _)
 4 
 5     def homomorphism[F[_], X, Y](implicit ap: Applicative[F], ax: Arbitrary[X], af: Arbitrary[X => Y], e: Equal[F[Y]]) =
 6       forAll(ap.applicativeLaw.homomorphism[X, Y] _)
 7 
 8     def interchange[F[_], X, Y](implicit ap: Applicative[F], ax: Arbitrary[X], afx: Arbitrary[F[X => Y]], e: Equal[F[Y]]) =
 9       forAll(ap.applicativeLaw.interchange[X, Y] _)
10 
11     def mapApConsistency[F[_], X, Y](implicit ap: Applicative[F], ax: Arbitrary[F[X]], afx: Arbitrary[X => Y], e: Equal[F[Y]]) =
12       forAll(ap.applicativeLaw.mapLikeDerived[X, Y] _)
13 
14     def laws[F[_]](implicit F: Applicative[F], af: Arbitrary[F[Int]],
15                    aff: Arbitrary[F[Int => Int]], e: Equal[F[Int]]) = new Properties("applicative") {
16       include(ScalazProperties.apply.laws[F])
17       property("identity") = applicative.identity[F, Int]
18       property("homomorphism") = applicative.homomorphism[F, Int, Int]
19       property("interchange") = applicative.interchange[F, Int, Int]
20       property("map consistent with ap") = applicative.mapApConsistency[F, Int, Int]
21     }
22   }

applicative.laws定义了4个测试Property再加上apply的测试property。这些定律(laws)在scalaz/Applicative.scala里定义了:


 1  trait ApplicativeLaw extends ApplyLaw {
 2     /** `point(identity)` is a no-op. */
 3     def identityAp[A](fa: F[A])(implicit FA: Equal[F[A]]): Boolean =
 4       FA.equal(ap(fa)(point((a: A) => a)), fa)
 5 
 6     /** `point` distributes over function applications. */
 7     def homomorphism[A, B](ab: A => B, a: A)(implicit FB: Equal[F[B]]): Boolean =
 8       FB.equal(ap(point(a))(point(ab)), point(ab(a)))
 9 
10     /** `point` is a left and right identity, F-wise. */
11     def interchange[A, B](f: F[A => B], a: A)(implicit FB: Equal[F[B]]): Boolean =
12       FB.equal(ap(point(a))(f), ap(f)(point((f: A => B) => f(a))))
13 
14     /** `map` is like the one derived from `point` and `ap`. */
15     def mapLikeDerived[A, B](f: A => B, fa: F[A])(implicit FB: Equal[F[B]]): Boolean =
16       FB.equal(map(fa)(f), ap(fa)(point(f)))
17   }

再测试一下Configure类型是否也遵循Applicative定律:


1 pplicative.laws[Configure].check                 //> 
 2 + applicative.apply.functor.invariantFunctor.identity: OK, passed 100 tests
 3                                                   //| 
 4                                                   //|   .
 5                                                   //| 
 6 + applicative.apply.functor.invariantFunctor.composite: OK, passed 100 test
 7                                                   //| 
 8                                                   //|   s.
 9                                                   //| 
10 + applicative.apply.functor.identity: OK, passed 100 tests.
11                                                   //| 
12 + applicative.apply.functor.composite: OK, passed 100 tests.
13                                                   //| 
14 + applicative.apply.composition: OK, passed 100 tests.
15                                                   //| 
16 + applicative.identity: OK, passed 100 tests.
17                                                   //| 
18 + applicative.homomorphism: OK, passed 100 tests.
19                                                   //| 
20 + applicative.interchange: OK, passed 100 tests.
21                                                   //| 
22 + applicative.map consistent with ap: OK, passed 100 tests.

功通过了Applicative定律测试。现在我们可以说Configure类型既是Functor也是Applicative。


相关文章
|
资源调度
There appears to be trouble with your network connection.Retrying
There appears to be trouble with your network connection.Retrying
2060 0
There appears to be trouble with your network connection.Retrying
|
4月前
|
SQL Java
flywa报错Detected resolved migration not applied to database: 20221103.10000
flywa报错Detected resolved migration not applied to database: 20221103.10000
75 2
|
8月前
|
JavaScript 程序员 Swift
The compiler is unable to type-check this expression in reasonable time; try breaking up the express
The compiler is unable to type-check this expression in reasonable time; try breaking up the express
101 0
|
开发工具
WARNING: library configuration mismatch
WARNING: library configuration mismatch
343 0
CMake 3.7.2 or higher is required. You are running version 2.8.12.2
CMake 3.7.2 or higher is required. You are running version 2.8.12.2
301 0
|
并行计算 PyTorch 算法框架/工具
CUDA unknown error - this may be due to an incorrectly set up environment 问题解决
CUDA unknown error - this may be due to an incorrectly set up environment 问题解决
CUDA unknown error - this may be due to an incorrectly set up environment 问题解决
|
安全 Java C++
Note
开发分布式应用distributed;强类型机制 异常处理exception except 垃圾的自动收集java对通过网络下载的类具有安全防范机制通过网络下载的类有一个安全防范机制;classLoader;分配不同的名字空间以防替代本地的同名类,字节代码检查,并提供安全管理机制SecurityMa...
1083 0
is present but cannot be translated into a null value due to being declared as a primitive type
解决办法:把基本类型改为对象,譬如此处将pageId的类型由int 改为Integer 2016-10-19 19:36:11.275 DEBUG [http-nio-9999-exec-2][org.
2714 0