Scalaz(9)- typeclass:checking instance abiding the laws

简介:

  在前几篇关于Functor和Applilcative typeclass的讨论中我们自定义了一个类型Configure,Configure类型的定义是这样的:


1 case class Configure[+A](get: A)
 2 object Configure {
 3     implicit val configFunctor = new Functor[Configure] {
 4         def map[A,B](ca: Configure[A])(f: A => B): Configure[B] = Configure(f(ca.get))
 5     }
 6     implicit val configApplicative = new Applicative[Configure] {
 7         def point[A](a: => A) = Configure(a)
 8         def ap[A,B](ca: => Configure[A])(cfab: => Configure[A => B]): Configure[B] = cfab map {fab => fab(ca.get)}
 9     }
10 }

通过定义了Configure类型的Functor和Applicative隐式实例(implicit instance),我们希望Configure类型既是一个Functor也是一个Applicative。那么怎么才能证明这个说法呢?我们只要证明Configure类型的实例能遵循它所代表的typeclass操作定律就行了。Scalaz为大部分typeclass提供了测试程序(scalacheck properties)。在scalaz/scalacheck-binding/src/main/scala/scalaz/scalacheck/scalazProperties.scala里我们可以发现有关functor scalacheck properties:


 1 object functor {
 2     def identity[F[_], X](implicit F: Functor[F], afx: Arbitrary[F[X]], ef: Equal[F[X]]) =
 3       forAll(F.functorLaw.identity[X] _)
 4 
 5     def composite[F[_], X, Y, Z](implicit F: Functor[F], af: Arbitrary[F[X]], axy: Arbitrary[(X => Y)],
 6                                    ayz: Arbitrary[(Y => Z)], ef: Equal[F[Z]]) =
 7       forAll(F.functorLaw.composite[X, Y, Z] _)
 8 
 9     def laws[F[_]](implicit F: Functor[F], af: Arbitrary[F[Int]], axy: Arbitrary[(Int => Int)],
10                    ef: Equal[F[Int]]) = new Properties("functor") {
11       include(invariantFunctor.laws[F])
12       property("identity") = identity[F, Int]
13       property("composite") = composite[F, Int, Int, Int]
14     }
15   }

可以看到:functor.laws[F[_]]主要测试了identity, composite及invariantFunctor的properties。在scalaz/Functor.scala文件中定义了这几条定律:


 1  trait FunctorLaw extends InvariantFunctorLaw {
 2     /** The identity function, lifted, is a no-op. */
 3     def identity[A](fa: F[A])(implicit FA: Equal[F[A]]): Boolean = FA.equal(map(fa)(x => x), fa)
 4 
 5     /**
 6      * A series of maps may be freely rewritten as a single map on a
 7      * composed function.
 8      */
 9     def composite[A, B, C](fa: F[A], f1: A => B, f2: B => C)(implicit FC: Equal[F[C]]): Boolean = FC.equal(map(map(fa)(f1))(f2), map(fa)(f2 compose f1))
10   }
11  。

我们在下面试着对那个Configure类型进行Functor实例和Applicative实例的测试:


 1 import scalaz._
 2 import Scalaz._
 3 import shapeless._
 4 import scalacheck.ScalazProperties._
 5 import scalacheck.ScalazArbitrary._
 6 import scalacheck.ScalaCheckBinding._
 7 import org.scalacheck.{Gen, Arbitrary}
 8 implicit def cofigEqual[A]: Equal[Configure[A]] = Equal.equalA
 9                                                   //> cofigEqual: [A#2921073]=> scalaz#31.Equal#41646[Exercises#29.ex1#59011.Confi
10                                                   //| gure#2921067[A#2921073]]
11 implicit def configArbi[A](implicit a: Arbitrary[A]): Arbitrary[Configure[A]] =
12    a map { b => Configure(b) }                    //> configArbi: [A#2921076](implicit a#2921242: org#15.scalacheck#121951.Arbitra
13                                                   //| ry#122597[A#2921076])org#15.scalacheck#121951.Arbitrary#122597[Exercises#29.
14                                                   //| ex1#59011.Configure#2921067[A#2921076]]

除了需要的import外还必须定义Configure类型的Equal实例以及任意测试数据产生器(test data generator)configArbi[A]。我们先测试Functor属性:


1 functor.laws[Configure].check                     //> 
2 + functor.invariantFunctor.identity: OK, passed 100 tests.
3                                                   //| 
4 + functor.invariantFunctor.composite: OK, passed 100 tests.
5                                                   //| 
6 + functor.identity: OK, passed 100 tests.
7                                                   //| 
8 + functor.composite: OK, passed 100 tests.

成功通过Functor定律测试。

再看看Applicative的scalacheck property:scalaz/scalacheck/scalazProperties.scala


 1  object applicative {
 2     def identity[F[_], X](implicit f: Applicative[F], afx: Arbitrary[F[X]], ef: Equal[F[X]]) =
 3       forAll(f.applicativeLaw.identityAp[X] _)
 4 
 5     def homomorphism[F[_], X, Y](implicit ap: Applicative[F], ax: Arbitrary[X], af: Arbitrary[X => Y], e: Equal[F[Y]]) =
 6       forAll(ap.applicativeLaw.homomorphism[X, Y] _)
 7 
 8     def interchange[F[_], X, Y](implicit ap: Applicative[F], ax: Arbitrary[X], afx: Arbitrary[F[X => Y]], e: Equal[F[Y]]) =
 9       forAll(ap.applicativeLaw.interchange[X, Y] _)
10 
11     def mapApConsistency[F[_], X, Y](implicit ap: Applicative[F], ax: Arbitrary[F[X]], afx: Arbitrary[X => Y], e: Equal[F[Y]]) =
12       forAll(ap.applicativeLaw.mapLikeDerived[X, Y] _)
13 
14     def laws[F[_]](implicit F: Applicative[F], af: Arbitrary[F[Int]],
15                    aff: Arbitrary[F[Int => Int]], e: Equal[F[Int]]) = new Properties("applicative") {
16       include(ScalazProperties.apply.laws[F])
17       property("identity") = applicative.identity[F, Int]
18       property("homomorphism") = applicative.homomorphism[F, Int, Int]
19       property("interchange") = applicative.interchange[F, Int, Int]
20       property("map consistent with ap") = applicative.mapApConsistency[F, Int, Int]
21     }
22   }

applicative.laws定义了4个测试Property再加上apply的测试property。这些定律(laws)在scalaz/Applicative.scala里定义了:


 1  trait ApplicativeLaw extends ApplyLaw {
 2     /** `point(identity)` is a no-op. */
 3     def identityAp[A](fa: F[A])(implicit FA: Equal[F[A]]): Boolean =
 4       FA.equal(ap(fa)(point((a: A) => a)), fa)
 5 
 6     /** `point` distributes over function applications. */
 7     def homomorphism[A, B](ab: A => B, a: A)(implicit FB: Equal[F[B]]): Boolean =
 8       FB.equal(ap(point(a))(point(ab)), point(ab(a)))
 9 
10     /** `point` is a left and right identity, F-wise. */
11     def interchange[A, B](f: F[A => B], a: A)(implicit FB: Equal[F[B]]): Boolean =
12       FB.equal(ap(point(a))(f), ap(f)(point((f: A => B) => f(a))))
13 
14     /** `map` is like the one derived from `point` and `ap`. */
15     def mapLikeDerived[A, B](f: A => B, fa: F[A])(implicit FB: Equal[F[B]]): Boolean =
16       FB.equal(map(fa)(f), ap(fa)(point(f)))
17   }

再测试一下Configure类型是否也遵循Applicative定律:


1 pplicative.laws[Configure].check                 //> 
 2 + applicative.apply.functor.invariantFunctor.identity: OK, passed 100 tests
 3                                                   //| 
 4                                                   //|   .
 5                                                   //| 
 6 + applicative.apply.functor.invariantFunctor.composite: OK, passed 100 test
 7                                                   //| 
 8                                                   //|   s.
 9                                                   //| 
10 + applicative.apply.functor.identity: OK, passed 100 tests.
11                                                   //| 
12 + applicative.apply.functor.composite: OK, passed 100 tests.
13                                                   //| 
14 + applicative.apply.composition: OK, passed 100 tests.
15                                                   //| 
16 + applicative.identity: OK, passed 100 tests.
17                                                   //| 
18 + applicative.homomorphism: OK, passed 100 tests.
19                                                   //| 
20 + applicative.interchange: OK, passed 100 tests.
21                                                   //| 
22 + applicative.map consistent with ap: OK, passed 100 tests.

功通过了Applicative定律测试。现在我们可以说Configure类型既是Functor也是Applicative。


相关文章
|
6月前
|
JavaScript
Property “selectedItemIndex“ was accessed during render but is not defined on instance. 报错解决
Property “selectedItemIndex“ was accessed during render but is not defined on instance. 报错解决
594 0
|
Java Maven
An attempt was made to call a method that does not exist. The attempt was made from the following
An attempt was made to call a method that does not exist. The attempt was made from the following
446 0
|
JavaScript 算法 前端开发
Property xxx was accessed during render but is not defined on instance
目前el-form的model主要用表单验证的,也就是配合el-form的rules和el-form-item的prop来使用的。不信的话,你可以增加一个rules和prop(为了调用验证方法,也el-form也加一个ref属性,相当于id或者class选择器的意思),但是不写model,然后验证的话,会提示缺少model,导致无法验证成功。
Property xxx was accessed during render but is not defined on instance
|
并行计算 PyTorch 算法框架/工具
CUDA unknown error - this may be due to an incorrectly set up environment 问题解决
CUDA unknown error - this may be due to an incorrectly set up environment 问题解决
CUDA unknown error - this may be due to an incorrectly set up environment 问题解决
解决RuntimeError: running_mean should contain 36864 elements not 4096
一般在卷积层Conv2d后添加正则化BNBatchNormal,使得数据在relu激活前不会因为数据过大而导致网络不稳定,而我在代码中BatchNorm2d的输入通道数与前一层Conv2d的输出通道数不一致,导致报这个错,两者修改一直即可(这里修改为36864即可)。
1005 0
When should reread of cl_crm_bol_entity and $scope.$apply be called manually
When should reread of cl_crm_bol_entity and $scope.$apply be called manually
148 0
When should reread of cl_crm_bol_entity and $scope.$apply be called manually
Identify the logic how BOL node name is categorized into different object type
Identify the logic how BOL node name is categorized into different object type
Identify the logic how BOL node name is categorized into different object type
|
弹性计算 Serverless
Automated operation of Function Compute
Alibaba Cloud Function Compute is an event-driven and fully-managed compute service. With Function Compute, you can quickly build any type of application.
1771 0