PAI深度学习Tensorflow框架多机多卡多PS Server使用说明

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,100CU*H 3个月
简介:

简介

PAI目前已经上线了支持多机、多卡、多PS Server的TensorFlow服务,目前只支持华北2 Region。华北2 Region因为支持多机多卡功能,适用于大规模数据的训练,相关服务需要收费,有需要的相关机构可以联系我们。

原理说明

  • Parameter Server节点:用来存储TensorFlow计算过程中的参数。配置多个PS节点,计算参数将会被自动切片并存储在不同的PS节点中,从而减小Worker和PS节点通信过程中的带宽限制的影响。
  • Worker节点:“多机多卡”中的“机”,GPU卡的载体。
  • Task节点:“多机多卡”中的“卡”,在PAI中指的是GPU卡,在TensorFlow训练过程中,通过数据切片将数据分布在不同的Task节点进行模型参数的训练。

使用说明

多机、多卡、多PS功能会以服务化的方式提供,用户无需关心底层计算资源的调度和运维,只需要通过PAI前端的简单配置即可快速搭建起整个分布式计算网络。下面介绍下具体的使用方式:

1.前端配置

  • 将mnist_cluster.tar.gz文件下载并上传到OSS(本文下部提供下载地址),配置深度学习的OSS读取权限,拖拽任意版本TensorFlow组件按照下图连接,设置对应的代码数据源(Python代码文件设置mnist_cluster.tar.gz路径,Python主文件填入mnist_cluster.py):
  • 点击“执行调优”进行参数配置:
  • 通过以上配置可以快速建立起如下图所示的多机多卡多PS计算网络结构,其中PS为Parameter Server服务,WORKER为计算节点机器,TASK表示具体执行计算的GPU卡:

2.代码端设置

传统的TensorFlow多机多卡作业需要在代码端输入每一个计算节点的对应端口信息,如下图所示:

当计算节点数量增多时,这种端口信息的配置会非常复杂。PAI优化了计算节点配置信息的功能,只需要以下两行代码即可自动在代码端获取计算节点信息。

 ps_hosts = FLAGS.ps_hosts.split(",")#框架层提供ps_hosts的端口
 worker_hosts = FLAGS.worker_hosts.split(",")#框架层提供worker_hosts的端口
AI 代码解读

3.运行日志查看

  • 右键TensorFlow,产看日志,可以看到资源的分配情况。分配两个PS,两个WORKER。
  • 点击蓝色链接,可以在logview中查看对应每个worker的运行状态:

代码下载

https://help.aliyun.com/document_detail/64146.html

相关实践学习
使用PAI+LLaMA Factory微调Qwen2-VL模型,搭建文旅领域知识问答机器人
使用PAI和LLaMA Factory框架,基于全参方法微调 Qwen2-VL模型,使其能够进行文旅领域知识问答,同时通过人工测试验证了微调的效果。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
目录
打赏
0
58
58
0
82435
分享
相关文章
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
737 55
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
害虫识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了12种常见的害虫种类数据集【"蚂蚁(ants)", "蜜蜂(bees)", "甲虫(beetle)", "毛虫(catterpillar)", "蚯蚓(earthworms)", "蜚蠊(earwig)", "蚱蜢(grasshopper)", "飞蛾(moth)", "鼻涕虫(slug)", "蜗牛(snail)", "黄蜂(wasp)", "象鼻虫(weevil)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Djan
325 1
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
深度学习工具和框架详细指南:PyTorch、TensorFlow、Keras
在深度学习的世界中,PyTorch、TensorFlow和Keras是最受欢迎的工具和框架,它们为研究者和开发者提供了强大且易于使用的接口。在本文中,我们将深入探索这三个框架,涵盖如何用它们实现经典深度学习模型,并通过代码实例详细讲解这些工具的使用方法。
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
403 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
8月前
|
PAI下面的gbdt、xgboost、ps-smart 算法如何优化?
设置gbdt 、xgboost等算法的样本和特征的采样率
219 2
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
437 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
TensorFlow,一款由谷歌开发的开源深度学习框架,详细讲解了使用 TensorFlow 构建深度学习模型的步骤
本文介绍了 TensorFlow,一款由谷歌开发的开源深度学习框架,详细讲解了使用 TensorFlow 构建深度学习模型的步骤,包括数据准备、模型定义、损失函数与优化器选择、模型训练与评估、模型保存与部署,并展示了构建全连接神经网络的具体示例。此外,还探讨了 TensorFlow 的高级特性,如自动微分、模型可视化和分布式训练,以及其在未来的发展前景。
793 5
基于TensorFlow的深度学习模型训练与优化实战
基于TensorFlow的深度学习模型训练与优化实战
379 3
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
395 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
349 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型

相关产品

  • 人工智能平台 PAI
  • AI助理

    你好,我是AI助理

    可以解答问题、推荐解决方案等

    登录插画

    登录以查看您的控制台资源

    管理云资源
    状态一览
    快捷访问