Carath\'eodory 不等式

简介: (Carath\'eodory 不等式) 利用 Scharwz 引理及线性变换, 证明: 若函数 $f(z)$ 在圆 $|z|

(Carath\'eodory 不等式) 利用 Scharwz 引理及线性变换, 证明: 若函数 $f(z)$ 在圆 $|z|<R$ 内全纯, 在 $|z|\leq R$ 上连续, $M(r)$ 及 $A(r)$ 分别为 $|f(z)|$ 及 $\Re f(z)$ 在圆周 $|z|=r$ 上的最大值, 则当 $0<r<R$ 时, 有 $ M(r)\leq \frac{2r}{R-r}A(R)+\frac{R+r}{R-r}|f(0)|.$

证明: (1) 当 $f(0)=0$ 时, 记 $A=A(R)$, 则由 $\Re f(z)$ 调和及最大模原理, $A\geq f(0)=0$. 所以 $f:D(0,R)\to \sed{w;\ \Re w\leq A}$. 记 $$\bex \psi(\xi)=R\xi,\quad \phi(w)=\frac{w}{w-2A}. \eex$$ 则 $\phi\circ f\circ \psi:D(0,1)\to D(0,1)$ 以 $0$ 为不动点. 由 Schwarz 引理, $$\beex \bea |\phi\circ f\circ \psi(\xi)|&\leq |\xi|,\quad \xi\in D(0,1),\\ |\phi(f(R\xi)|&\leq |\xi|,\quad \xi\in D(0,1),\\ \frac{|f(z)|}{|f(z)-2A}=|\phi(f(z))|&\leq\frac{|z|}{R},\quad z\in D(0,R),\\ |f(z)|&\leq \frac{2|z|A}{R-|z|},\quad z\in D(0,R),\\ M(r)&\leq \frac{2r}{R-r}A. \eea \eeex$$ (2) 当 $f(0)\neq 0$ 时, 考虑 $g(z)=f(z)-f(0)$, 则由 (1) 知 $$\beex \bea \max_{|z|=r}|g(z)|&\leq \frac{2r}{R-r}\max_{|z|=R}\Re g(z),\\ |f(z)|-|f(0)|&\leq \frac{2r}{R-r}[A(R)+|f(0)|],\quad|z|=r,\\ |f(z)|&\leq \frac{2r}{R-r}A(R)+\frac{R+r}{R-r}|f(0)|,\quad |z|=r. \eea \eeex$$

目录
相关文章
|
8月前
迭代法求一元三次方程
迭代法求一元三次方程
93 0
齐次定理
齐次定理(Homogeneity principle)是物理学中的一个原理,它适用于线性系统,描述了当系统受到缩放输入时,系统响应的缩放关系。
396 0
|
8月前
leetcode-990:等式方程的可满足性
leetcode-990:等式方程的可满足性
53 0
对偶定理的介绍
对偶定理:问题的对偶性与解的对偶性 一、引言 对偶定理是数学中的一个重要概念,它描述了问题的对偶性与解的对偶性之间的关系。通过对偶定理,我们可以将一个问题转化为其对偶问题,并通过解决对偶问题来解决原问题。本文将介绍对偶定理的概念、证明方法以及应用场景。 二、对偶定理的概念 对偶定理是指在某些情况下,一个问题的对偶问题与原问题具有相同的性质和结构。对偶问题是通过对原问题的变量、约束条件或目标函数进行转换而得到的。对偶定理认为,如果原问题的解存在,则对偶问题的解也存在,并且两个问题的解具有一种对应关系。 三、对偶定理的证明方法 对偶定理的证明方法通常是通过构造一个对偶映射来进行推导。具体步骤
300 0
|
Python
递推方程
递推方程是一种数学方程,其中未知量的值被表示为先前已知量值的函数。递推方程通常具有递归的形式,即一个或多个变量被递归地定义为同一变量的函数。递推方程的一个关键特征是,解决方案通常可以通过迭代计算得到,而不是直接求解。递推方程广泛应用于数学、物理、计算机科学等领域。
120 0
1238:一元三次方程求解 2020-12-27
1238:一元三次方程求解 2020-12-27
103 0
最优化理论(二)拉格朗日乘子法
最优化理论(二)拉格朗日乘子法
208 0
|
人工智能 开发者
切比雪夫不等式 | 学习笔记
快速学习切比雪夫不等式
切比雪夫不等式 | 学习笔记
|
机器学习/深度学习 算法 开发者
不等式约束条件下求极值1| 学习笔记
快速学习不等式约束条件下求极值1。
不等式约束条件下求极值1| 学习笔记

热门文章

最新文章