来源 [尊重原有作者劳动成果]
一、 计算题
1:解:
lim
=\underset{n\to +\infty }{\mathop{\lim }}\,\sqrt[n]{\frac{1}{2}}\cdot \underset{n\to +\infty }{\mathop{\lim }}\,\sqrt[n]{\prod\limits_{i=1}^{n}{(1+\frac{i}{n})}}=\underset{n\to +\infty }{\mathop{\lim }}\,\sqrt[n]{\prod\limits_{i=1}^{n}{(1+\frac{i}{n})}}
而
\underset{n\to +\infty }{\mathop{\lim }}\,\sqrt[n]{\prod\limits_{i=1}^{n}{(1+\frac{i}{n})}}={{e}^{\underset{n\to +\infty }{\mathop{\lim }}\,\frac{1}{n}\sum\limits_{i=1}^{n}{\ln (1+\frac{i}{n})}}}={{e}^{\int_{0}^{1}{\ln (1+x)dx}}}
由于
\int_{0}^{1}{\ln (1+x)dx=x\ln (1+x)|_{0}^{1}}-\int_{0}^{1}{\frac{x}{1+x}}dx=\ln 2-1+\ln (1+x)|_{0}^{1}=2\ln 2-1=\ln \frac{4}{e}
于是
\underset{n\to +\infty }{\mathop{\lim }}\,\frac{1}{n}\sqrt[n]{n(n+1)(n+2)\cdots (2n-1)}=\frac{4}{e}
2:解: 不妨设
x=r\sin \varphi \cos \theta ,y=r\sin \varphi \sin \theta ,z=r\cos \varphi ,0\le \varphi \le \pi ,0\le \theta \le 2\pi ,0\le r\le t
于是
\iiint\limits_{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}\le {{t}^{2}}}{\sin \sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}dxdydz}=\int_{0}^{2\pi }{d\theta \int_{0}^{\pi }{d\varphi \int_{0}^{t}{{{r}^{2}}\sin \varphi \cdot \sin rdr}}}
=2\pi \cdot (-\cos \varphi )_{0}^{\pi }\cdot \int_{0}^{t}{{{r}^{2}}}\sin rdr=4\pi \int_{0}^{t}{{{r}^{2}}}\sin rdr
于是
\underset{t\to {{0}^{+}}}{\mathop{\lim }}\,\frac{\iiint\limits_{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}\le {{t}^{2}}}{\sin \sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}dxdydz}}{{{t}^{4}}}=\underset{t\to {{0}^{+}}}{\mathop{\lim }}\,\frac{4\pi \int_{0}^{t}{{{r}^{2}}\sin rdr}}{{{t}^{4}}}=\underset{t\to {{0}^{+}}}{\mathop{\lim }}\,\frac{\pi {{t}^{2}}\sin t}{{{t}^{3}}}=\pi
3:解:不妨设
P(x,y)=-\frac{y}{{{x}^{2}}+9{{y}^{2}}},Q(x,y)=\frac{x}{{{x}^{2}}+9{{y}^{2}}}
于是
{{P}_{y}}=\frac{9{{y}^{2}}-{{x}^{2}}}{{{x}^{2}}+9{{y}^{2}}},{{Q}_{x}}=\frac{9{{y}^{2}}-{{x}^{2}}}{{{x}^{2}}+9{{y}^{2}}}
记D是L所包围的封闭面积,由格林公式可知:
\oint_{L}{\frac{xdy-ydx}{{{x}^{2}}+9{{y}^{2}}}}=\iint_{D}{({{Q}_{y}}-{{P}_{x}})dxdy=0}
二、 证明:不妨设g(x)={{x}^{\alpha }},0\alpha 1,x\in [0,+\infty ),且[0,+\infty )=[0,1]\cup [1,+\infty )
对任意的\varepsilon 0,任意的{{x}_{1}},{{x}_{2}}\in [1,+\infty ),由中值定理可知,存在\xi 在{{x}_{1}}与{{x}_{2}}之间,使得
\left| g({{x}_{1}})-g({{x}_{2}}) \right|=\left| g(\xi ) \right|\left| {{x}_{1}}-{{x}_{2}} \right|=\frac{\alpha }{{{\xi }^{^{1-\alpha }}}}\left| {{x}_{1}}-{{x}_{2}} \right|\le \alpha \left| {{x}_{1}}-{{x}_{2}} \right|
于是令\delta =\frac{\varepsilon }{\alpha },当\left| {{x}_{1}}-{{x}_{2}} \right|\delta 时,有\left| g({{x}_{1}})-g({{x}_{2}}) \right|\varepsilon
于是g(x)在[1,+\infty )上一致连续
而g(x)在[0,1]上连续,则g(x)在[0,1]上一致连续
于是g(x)在[0,+\infty )上一致连续
由\underset{x\to \infty }{\mathop{\lim }}\,f(x)存在,则存在{{M}_{1}}0,存在N0,当nN时,有\left| f(x) \right|{{M}_{1}}
而f(x)在[0,N+1]上连续,则f(x)在[0,N+1]上有界
于是存在{{M}_{2}}0,对一切x\in [0,N+1],有\left| f(x) \right|{{M}_{2}}
令M=\max \{{{M}_{1}},{{M}_{2}}\},则对一切x\in [0,+\infty ),有\left| f(x) \right|M
对任意的\varepsilon 0,任意的{{x}_{3}},{{x}_{4}}\in [0,+\infty ),由中值定理可知,存在\eta 在{{x}_{3}}与{{x}_{4}}之间,使得
\left| f(g({{x}_{3}}))-f(g({{x}_{4}})) \right|=\left| f(\eta ) \right|\left| g({{x}_{3}})-g({{x}_{4}}) \right|M\left| g({{x}_{3}})-g({{x}_{4}}) \right|
由g(x)在[0,+\infty )上一致连续
则对上述\varepsilon 0,{{x}_{3}},{{x}_{4}}\in [0,+\infty ),当\left| {{x}_{3}}-{{x}_{4}} \right|\delta 时,有\left| g({{x}_{3}})-g({{x}_{4}}) \right|\frac{\varepsilon }{M}
即\left| f(g({{x}_{3}}))-f(g({{x}_{4}})) \right|\varepsilon
于是f({{x}^{\alpha }})在[0,+\infty )上一致连续
三、 证明:不妨设
F(x)=[f(x)-f(a)][g(b)-g(a)]-[f(b)-f(a)][g(x)-g(a)],x\in [a,b]
于是F(a)=F(b)=0
而F(x)在[a,b]上连续,(a,b)内可导,由罗尔定理可知:
存在\xi \in (a,b),使得F(\xi )=0
即[f(b)-f(a)]g(\xi )=[g(b)-g(a)]f(\xi )
四、
(1)证明:,对任意的x\in (0,+\infty )由于\underset{n\to +\infty }{\mathop{\lim }}\,\frac{n}{{{e}^{nx}}}=0,则f(x)在(0,+\infty )上收敛
(2)证明:不妨设{{u}_{n}}(x)=n{{e}^{-nx}},由于\underset{n\to +\infty }{\mathop{\lim }}\,{{u}_{n}}(x)=0
于是
\underset{x\in (0,+\infty )}{\mathop{\sup }}\,\left| {{u}_{n}}(x)-0 \right|\ge {{u}_{n}}(\frac{1}{n})=n{{e}^{-1}}\to +\infty \ne 0(n\to +\infty )
于是\sum\limits_{n=1}^{+\infty }{n{{e}^{-nx}}}在(0,+\infty )上非一致收敛
(3)证明:由题可知:
f(x)={{e}^{-x}}+2{{e}^{-2x}}+\cdots +n{{e}^{-nx}}+(n+1){{e}^{-(n+1)x}}+\cdots
{{e}^{-x}}f(x)={{e}^{-2x}}+2{{e}^{-3x}}+\cdots +n{{e}^{-(n+1)x}}+(n+1){{e}^{-(n+2)x}}+\cdots
于是
(1-{{e}^{-x}})f(x)=\sum\limits_{n=1}^{+\infty }{{{e}^{-nx}}}=\frac{{{e}^{-x}}}{1-{{e}^{-x}}}
则f(x)=\frac{{{e}^{-x}}}{{{(1-{{e}^{-x}})}^{2}}}
显然f(x)在(0,+\infty )上无穷次可导
(或用定义进行证明)
五、设F(x,y)={{x}^{2}}+y-\sin (xy)
(1) 显然,有F(0,0)=0
(2){{F}_{y}}(x,y)=1-x\cos (xy)
(3){{F}_{y}}(0,0)=1\ne 0
由隐函数存在定理,存在\delta 0,存在x\in \left[ \delta ,+\infty \right) 上的连续可微的函数0{{{u}}_{n}}\left( x \right)\le \frac{1}{{{n}^{3}}x}\le \frac{1}{\delta }\frac{1}{{{n}^{3}}},y(0)=0,满足\left[ \delta ,+\infty \right) ,{S}\left( x \right)=\sum\limits_{n=1}^{\infty }{{{{{u}}}_{n}}\left( x \right)} ,{{F}_{x}}=2x-y\cos (xy),
且y(x)=-\frac{{{F}_{x}}(x,y)}{{{F}_{y}}(x,y)}=-\frac{2x-y\cos (xy)}{1-x\cos (xy)}
于是y(0)=0
六、
七、
(1)证明:由积分第一中值定理可知,存在{{x}_{n}}\in [n-1,n],使得
\sum\limits_{n=1}^{+\infty }{{{\left| u({{x}_{n}}) \right|}^{2}}=\sum\limits_{n=1}^{+\infty }{\int_{n-1}^{n}{{{\left| u(x) \right|}^{2}}dx}=\int_{0}^{+\infty }{{{\left| u(x) \right|}^{2}}dx\le }}}\int_{0}^{+\infty }{({{\left| u(x) \right|}^{2}}+{{\left| u(x) \right|}^{2}})dx+\infty }
于是
\underset{n\to +\infty }{\mathop{\lim }}\,\left| u{{({{x}_{n}})}^{2}} \right|=0\Rightarrow \underset{n\to +\infty }{\mathop{\lim }}\,\left| u({{x}_{n}}) \right|=0
于是存在 [0,+\infty ) 中的子列\{{{x}_{n}}\}_{0}^{+\infty },使得当n\to +\infty 时,{{x}_{n}}\to +\infty 且u({{x}_{n}})\to 0
(2)由于\int_{0}^{+\infty }{({{\left| u(x) \right|}^{2}}+{{\left| u(x) \right|}^{2}})dx}收敛,由柯西---施瓦兹不等式可知:
\left| {{u}^{2}}({{x}_{2}})-{{u}^{2}}({{x}_{1}}) \right|=2\int_{{{x}_{1}}}^{{{x}_{2}}}{\left| u(x)u(x) \right|}dx\le \int_{{{x}_{1}}}^{{{x}_{2}}}{({{\left| u(x) \right|}^{2}}+{{\left| u(x) \right|}^{2}})dx}\to 0({{x}_{2}}\ge {{x}_{1}}\to +\infty )
于是由柯西收敛准则:{{u}^{2}}(x)\to 0(x\to +\infty )\Rightarrow u(x)\to 0(x\to +\infty )
而u(x)在[0,+\infty )上连续,于是存在M0,使得\left| u(x) \right|\le M
令C=\frac{M}{\sqrt{\int_{0}^{+\infty }{({{\left| u(x) \right|}^{2}}+{{\left| u(x) \right|}^{2}})dx}}}
于是存在常数C0,使得
\underset{x\in [0,+\infty \}}{\mathop{\sup }}\,\left| u(x) \right|\le C{{(\int_{0}^{+\infty }{({{\left| u(x) \right|}^{2}}+{{\left| {u}(x) \right|}^{2}})}dx)}^{\frac{1}{2}}}
八、
(1)证明:由于
\frac{\partial u}{\partial n}=\frac{\partial u}{\partial x}\cos (n,x)+\frac{\partial u}{\partial y}\cos (n,y)+\frac{\partial u}{\partial z}\cos (n,z)
由第一型和第二型曲面积分的关系和Guass公式可知:
\iint\limits_{\partial \Omega }{v\cdot \frac{\partial u}{\partial n}}dS=\iint\limits_{\partial \Omega }{v[\frac{\partial u}{\partial x}\cos (n,x)+\frac{\partial u}{\partial y}\cos (n,y)+\frac{\partial u}{\partial z}\cos (n,z)}]dS
=\iint\limits_{\partial \Omega }{v[\frac{\partial u}{\partial x}dydz+\frac{\partial u}{\partial y}dzdx+\frac{\partial u}{\partial z}dxdy]}
=\iiint_{\Omega }{v\cdot \Delta udxdydz+\iiint_{\Omega }{\nabla v\cdot \nabla udxdydz}}
即\iiint_{\Omega }{v\Delta udxdydz=-}\iiint_{\Omega }{(\nabla u\cdot \nabla v)dxdydz+\iint\limits_{\partial \Omega }{v\cdot \frac{\partial u}{\partial n}}}dS
(2)