中国科学院大学2017年数学分析考研试题

简介: $ \lim \limits_{x \rightarrow \infty}x^{\frac{3}{2}}(\sqrt {2+x}-2\sqrt{1+x}+\sqrt{x}) $ 已知$ a_{n+1}(a_n+1)=1, a_0=0 $,证明数列的极限存在,并且求出极限值 f(x)三次连续可微,...

$ \lim \limits_{x \rightarrow \infty}x^{\frac{3}{2}}(\sqrt {2+x}-2\sqrt{1+x}+\sqrt{x}) $

已知$ a_{n+1}(a_n+1)=1, a_0=0 $,证明数列的极限存在,并且求出极限值

f(x)三次连续可微,令$ u(x,y,z)=f(xyz) $, 求 $ \phi(t)=\dfrac{ \partial^3 u}{\partial x \partial y \partial z } $,其中t=xyz,的具体表达式

求 $ \int \dfrac{dx}{1+x^4} $

已知f(x)在$ [0,1] $上连续二阶可微,并且$ \mid f(x) \mid \leq a  $,$\mid f''(x) \mid \leq b $,证明$ f'(x) \leq 2a+\frac{b}{2}  $

已知 $ f(x) $有界,可微,假设$ \lim \limits_{x \rightarrow \infty}f'(x) $存在,求证$ \lim \limits_{x \rightarrow \infty}f'(x)=0 $

求二重积分$ \iint \limits_D \mid x^2+y^2-1 \mid dxdy $, $ D=\{ (x,y) \mid 0 \leq x \leq 1, 0  \leq y \leq       1  \} $

已知 $ a_n=\sum \limits_{k=1}^n ln(k+1) $,证明 $ \sum  \limits_{n=1}^{\infty} \frac{1}{a_n } $发散

已知n为整数,$ a 为常数 , I_n(a)= { \int_0^{\infty} \dfrac{dx}{1+nx^a} }$
(1)试讨论其收敛性
(2)当a在使积分收敛的情况下,求$ \lim \limits _{n \rightarrow  \infty} I_n(a) $

在[a,b]上($ 0 < a < b $ ),证明下面的不等式成立$ \int_a^b (x^2+1)e^{-x^2} dx \geq e^{-a^2}-e^{-b^2} $

求 $ f(x)=e^x+e^{-x}+2cosx $的极值

大体就是这样,题目描述可能略有出入

 

转自: http://www.math.org.cn/forum.php?mod=viewthread&tid=37136

目录
相关文章
日期累加(北京理工大学考研机试题)
日期累加(北京理工大学考研机试题)
157 0
日期累加(北京理工大学考研机试题)
成绩排序2 (清华大学考研机试题)
成绩排序2 (清华大学考研机试题)
154 0
成绩排序2 (清华大学考研机试题)
成绩排序 (清华大学考研机试题)
成绩排序 (清华大学考研机试题)
188 0
成绩排序 (清华大学考研机试题)
|
机器学习/深度学习
[再寄小读者之数学篇](2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]行列式的计算)
(2014-04-18 from 352558840@qq.com [南开大学2014年高等代数考研试题]) 设 $n$ 阶行列式 $\sev{\ba{cccc} a_{11}&\cdots&a_{1n}\\ \vdots&\ddots&\vdots\\ a_{n1}&\cdots&a_{nn} \ea}=1,$ 且满足 $a_{ij}=-a_{ji}, i,j=1,2,\cdots,n$.
1029 0
[再寄小读者之数学篇] (2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]一个秩等式)
(2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]) 设 ${\bf A}$ 为 $s\times n$ 矩阵. 证明: $$\bex s-\rank({\bf E}_s-{\bf A}{\bf A}^T)=n-\rank({\bf E}_n-{\bf A}^T{\bf A}).
1261 0
[再寄小读者之数学篇](2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]二次型的零点)
(2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]) 设 ${\bf A}$ 为实对称矩阵, 存在线性无关的向量 ${\bf x}_1,{\bf x}_2$, 使得 ${\bf x}_1^T{\bf A}{\bf x}_1>0$, ${\b...
827 0
|
资源调度
[再寄小读者之数学篇](2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]可交换的线性变换)
(2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]) 设 $\sigma,\tau$ 为线性变换, 且 $\sigma$ 有 $n$ 个不同的特征值.
800 0
|
Perl C++
[再寄小读者之数学篇](2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]特征多项式的互素分解)
(2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]特征多项式的互素分解) 设 $f(x)$ 为 ${\bf A}$ 的特征多项式, 且存在互素的次数分别为 $p,q$ 的多项式 $g(x),h(x)$ 使得 $f(x)=g(x)h(x)$.
851 0

热门文章

最新文章

  • 1
    基于ssm的考研图书电子商务平台,附源码+数据库+论文
    103
  • 2
    2024重生之回溯数据结构与算法系列学习之串(12)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丟脸好嘛?】
    157
  • 3
    2024重生之回溯数据结构与算法系列学习之栈和队列精题汇总(10)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
    141
  • 4
    2024重生之回溯数据结构与算法系列学习之单双链表精题详解(9)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
    116
  • 5
    2024重生之回溯数据结构与算法系列学习(8)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
    147
  • 6
    2024重生之回溯数据结构与算法系列学习之王道第2.3章节之线性表精题汇总二(5)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
    108
  • 7
    2024重生之回溯数据结构与算法系列学习之单双链表【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
    158
  • 8
    2024重生之回溯数据结构与算法系列学习之顺序表习题精讲【无论是王道考研人还真爱粉都能包会的;不然别给我家鸽鸽丢脸好嘛?】
    145
  • 9
    2024重生之回溯数据结构与算法系列学习之顺序表【无论是王道考研人还真爱粉都能包会的;不然别给我家鸽鸽丢脸好嘛?】
    139
  • 10
    2024重生之回溯数据结构与算法系列学习【无论是王道考研人还真爱粉都能包会的;不然别给我家鸽鸽丢脸好嘛?】
    104