linux驱动开发--字符设备:内核等待队列

简介: <p><span style="font-size:18px"><span style="white-space:pre"></span><span style="white-space:pre"></span>      在Linux驱动程序中,可以使用等待队列(wait queue)来实现阻塞进程的唤醒。等待队列可以用来同步对系统资源的访问。</span></p> <p><span

      在Linux驱动程序中,可以使用等待队列(wait queue)来实现阻塞进程的唤醒。等待队列可以用来同步对系统资源的访问。

1.定义和初始化队列头
wait_queue_head_t wqh;
init_waitqueue_head(wait_queue_head_t *wqh);

2.定义和初始化等待队列
DECLARE_WAITQUEUE(name, tsk);
3.添加、移除等待队列
add_wait_queue(wait_queue_head_t *q, wait_queue_t *wait);
remove_wait_queue(wait_queue_head_t *q, wait_queue_t *wait);
将等待队列wait添加到等待队列头q执行的等待队列链表中,或者从中删除。
4.等待事件
wait_event(queue, condition);当condition为真时,立即返回;否则进程进入TASK_UNINTERRUPTIBLE类型的睡眠状态,并挂在queue指定的等待队列头上。
add_wait_queue(queue, conditon);当condition为真时,立即返回;否则进程进入TASK_INTERRUPTIBLE类型的睡眠状态,并挂在queue指定的等待队列头上。
5.唤醒队列
wake_up(wait_queue_head_t *queue);
wake_up_interruptible(wait_queue_head_t *queue);
唤醒由queue指向的等待队列头链表中所有等待队列对应的进程。
6.在等待队列中睡眠
sleep_on(wait_queue_head_t *q);让进程进入不可中断的睡眠,并将它放入等待队列
interruptible_sleep_on(wait_queue_head_t *q);让进程进入不可中断的睡眠,并将它进入等待队列。


内核等待队列一般使用方法:
a.定义和初始化等待队列,将进程状态改变,并将等待队列添加到等待队列数据链中
b.改变进程状态的方法:调用set_current_state(state_value)函数、调用set_task_state(task, state_value)函数、直接采用current->state = TASK_INTERRUPTIBLE,类似于赋值语句。
c.通过schedule()调用放弃cpu,调度其他进程执行
d.进程被其它地方唤醒,将等待队列移出等待队列头指向的数据链

/**
*Copyright (c) 2013.TianYuan
*All rights reserved.
*
*文件名称: char_device_driver13.c
*文件标识: 等待队列
*
*当前版本:1.0
*作者:wuyq 
*
*取代版本:xxx
*原作者:xxx
*完成日期:2013-11-29
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/cdev.h>
#include <linux/device.h>
#include <linux/slab.h>
#include <asm/uaccess.h>

#include <asm/gpio.h>
#include <plat/gpio-cfg.h>
#include <linux/spinlock_types.h>
#include <linux/sched.h>


MODULE_LICENSE("GPL");
#define CDD_MAJOR	200//cat /proc/devices找一个尚未使用的
#define CDD_MINOR	0
#define CDD_COUNT	2
dev_t dev = 0;
u32 cdd_major = 0;
u32 cdd_minor = 0;

struct class *dev_class = NULL;
#define BUF_SIZE	100
struct cdd_cdev{
	struct cdev cdev;
	struct device *dev_device;
	u8 led;
	
	char kbuf[BUF_SIZE];
	
	u32 data_len;//记录缓冲区中已经写入数据的长度
	//定义等待队列头
	wait_queue_head_t wqh;
};

struct cdd_cdev *cdd_cdevp = NULL;

unsigned long led_gpio_table[2] = {
	S5PV210_GPC1(3),//数字
	S5PV210_GPC1(4),
};

int cdd_open(struct inode* inode, struct file *filp)
{
	struct cdd_cdev *pcdevp = NULL;
	printk("enter cdd_open!\n");

	pcdevp = container_of(inode->i_cdev, struct cdd_cdev, cdev);
	printk("led = %d\n", pcdevp->led);
	
	/*获取信号量*/
	//down获取信号量不成功,会导致进程睡眠(第3个进程的时候)
	//down(&pcdevp->sem_open);
	if(down_interruptible(&pcdevp->sem_open)<0){
		return -1;
	}
	filp->private_data = pcdevp;
	//申请gpio管脚
	gpio_request(led_gpio_table[0], "GPC1_3");
	gpio_request(led_gpio_table[1], "GPC1_4");
	
	return 0;
}

int cdd_read(struct file *filp, char __user *buf, size_t count, loff_t *offset)
{
	int ret = 0;
	u32 pos = *offset;
	u32 cnt = count;
	
	struct cdd_cdev *cdevp = filp->private_data;
#if 0
	//定义并初始化一个等待队列
	DECLARE_WAITQUEUE(wq, current);
	//将等待队列添加到wqh指向的链表
	add_wait_queue(&pcdevp->wqh, &wq);
	//判断设备有没有数据供用户空间读,假设led不为0,表示有数据供用户空间读取
	if(pcdevp->led == 0){
		printk("no data for reading! sleep...\n");
		//设置当前线程为睡眠状态
		set_current_state(TASK_INTERRUPTIBLE);
		schedule();//内核调度cpu的算法
		printk("have data for reading!\n");
	}
	//从指定的链表中删除等待队列
	remove_wait_queue(&pcdevp->wqh, &wq);
#endif
	wait_event_interruptible(&pcdevp->wqh, pcdevp->led != 0); 
	
	//printk("enter cdd_read!\n");
	if(cnt > (cdevp->data_len-pos) ){
		cnt = cdevp->data_len - pos;
	}
	
	ret = copy_to_user(buf, cdevp->kbuf+pos, cnt);
	//printk("kernel kbuf content:%s\n", cdevp->kbuf);
	*offset += cnt;
	
	pcdevp->led = 0;
	
	return ret;
}

int cdd_write(struct file *filp, const char __user *buf, size_t count, loff_t *offset)
{
	int ret = 0;
	struct cdd_cdev *cdevp = filp->private_data;
	u32 pos = *offset;
	u32 cnt = count;
	
	//printk("enter cdd_write!\n");
	if(cnt > (BUF_SIZE - pos) ){
		cnt = BUF_SIZE - pos;
	}
	ret = copy_from_user(cdevp->kbuf+pos, buf, cnt);
	*offset += cnt;
	if(*offset > cdevp->data_len){
		cdevp->data_len = *offset;
	}
	pcdevp->led = 1;
	//唤醒等待队列头中的一个等待队列
	wake_up_interruptible(&pcdevp->wqh);
	
	
	return ret;
}

int cdd_ioctl(struct inode *inode, struct file *filp, unsigned int cmd, unsigned long data)
{
	//printk("enter cdd_ioctl!\n");
	switch(cmd){
		case 1://点亮灯
			//设置管脚为输出功能
			//参数:1.要设置的管脚编号2.默认的输出值 0低电平1高电平
			gpio_direction_output(led_gpio_table[data], 0);
			//禁止内部上拉
			s3c_gpio_setpull(led_gpio_table[data], SEC_GPIO_PULL_NONE);
			//设置输出值
			gpio_set_value(led_gpio_table[data], 1);
			
			break;
		case 0://熄灭灯
			
			//设置管脚为输出功能
			//参数:1.要设置的管脚编号2.默认的输出值 0低电平1高电平
			gpio_direction_output(led_gpio_table[data], 0);
			//禁止内部上拉
			s3c_gpio_setpull(led_gpio_table[data], SEC_GPIO_PULL_NONE);
			//设置输出值
			gpio_set_value(led_gpio_table[data], 0);
			
			break;
		default:
			return -EINVAL;
	}
	
	
	return 0;
}

int cdd_release(struct inode *inode, struct file *filp)
{
	struct cdd_cdev *pcdevp = filp->private_data;
	printk("enter cdd_release!\n");
	
	gpio_free(led_gpio_table[0]);
	gpio_free(led_gpio_table[1]);
	up(&pcdevp->sem_open);
	return 0;
}

loff_t cdd_llseek(struct file *filp, loff_t offset, int whence)
{
	struct cdd_cdev *pcdevp = filp->private_data;
	loff_t newpos = 0;
	switch(whence){
		case SEEK_SET:
			newpos = offset;
			break;
		case SEEK_CUR:
			newpos = filp->f_pos + offset;
			break;
		case SEEK_END:
			newpos = pcdevp->data_len + offset;
			break;
		default:
			return -EINVAL;//无效的参数
	}
	
	if( newpos<0 || newpos>= BUF_SIZE ){
		return -EINVAL;
	}
	filp->f_pos = newpos;
	return newpos;
}

struct file_operations cdd_fops = {
	.owner = THIS_MODULE,
	.open = cdd_open,
	.read = cdd_read,
	.write = cdd_write,
	.ioctl = cdd_ioctl,
	.release = cdd_release,
	.llseek = cdd_llseek,
	};

int __init cdd_init(void)
{
	int ret = 0;
	int i = 0;
	
	if(cdd_major){
		dev = MKDEV(CDD_MAJOR, CDD_MINOR);//生成设备号
		//注册设备号;1、要注册的起始设备号2、连续注册的设备号个数3、名字
		ret = register_chrdev_region(dev, CDD_COUNT, "cdd_demo");
	}else{
		// 动态分配设备号
		ret = alloc_chrdev_region(&dev, cdd_minor, CDD_COUNT, "cdd_demo02");
	}
	
	if(ret < 0){
		printk("register_chrdev_region failed!\n");
		goto failure_register_chrdev;
	}
	//获取主设备号
	cdd_major = MAJOR(dev);
	printk("cdd_major = %d\n", cdd_major);
	
	cdd_cdevp = kzalloc(sizeof(struct cdd_cdev)*CDD_COUNT, GFP_KERNEL);
	if(IS_ERR(cdd_cdevp)){
		printk("kzalloc failed!\n");
		goto failure_kzalloc;
	}
	/*创建设备类*/
	dev_class = class_create(THIS_MODULE, "cdd_class");
	if(IS_ERR(dev_class)){
		printk("class_create failed!\n");
		goto failure_dev_class;
	}
	for(i=0; i<CDD_COUNT; i++){
		/*初始化cdev*/
		cdev_init(&(cdd_cdevp[i].cdev), &cdd_fops);
		/*添加cdev到内核*/
		cdev_add(&(cdd_cdevp[i].cdev), dev+i, 1);
		
		/* “/dev/xxx” */
		device_create(dev_class, NULL, dev+i, NULL, "cdd%d", i);
		
		cdd_cdevp[i].led = i;
		//初始化等待队列头
		init_waitqueue_head(&cdd_cdevp[i].wqh);
	}
	
	return 0;
failure_dev_class:
	kfree(cdd_cdevp);
failure_kzalloc:
	unregister_chrdev_region(dev, CDD_COUNT);
failure_register_chrdev:
	return ret;
}

void __exit cdd_exit(void)
{
/*逆序消除*/
	int i = 0;
	for(; i < CDD_COUNT; i++){
		device_destroy(dev_class, dev+i);
		cdev_del(&(cdd_cdevp[i].cdev));
		//cdev_del(&((cdd_cdevp+i)->cdev));
	}
	class_destroy(dev_class);
	kfree(cdd_cdevp);
	unregister_chrdev_region(dev, CDD_COUNT);
	
}	

module_init(cdd_init);
module_exit(cdd_exit);

/**
*Copyright (c) 2013.TianYuan
*All rights reserved.
*
*文件名称: char_device_driver13_test0.c
*文件标识: 此程序运行r,此时发生阻塞,进入等待
*
*当前版本:1.0
*作者:wuyq 
*
*取代版本:xxx
*原作者:xxx
*完成日期:2013-11-29
*/
#include <stdio.h>
#include <fcntl.h>
#include <stdlib.h>
#include <string.h>

/*手工创建设备节点文件
mknod /dev/cdd c 248 0
*/
int fd = 0;
char rbuf[100];
char wbuf[100] = "nihao!\n";


int main()
{
	char ch;
	
	fd = open("/dev/cdd0", O_RDWR);
	if(fd < 0){
		printf("open failed!\n");
		return -1;
	}
	printf("open successed fd = %d\n", fd);
	while(1)
	{
		printf("starting to test /dev/cdd...\n");
		ch = getchar();
		getchar();//取走回车
		if(ch == 'q'){
			break;
		}
		switch(ch){
			case 'r':
				memset(rbuf, 0, 100);//清空
				read(fd, rbuf, 3);
				printf("user space from kernel: %s\n", rbuf);
				break;
			case 'w':
				write(fd, wbuf, strlen(wbuf) );
				break;
			case 'o':
				ioctl(fd, 0, 0);
				break;
			case 'O':
				ioctl(fd, 1, 0);
				break;
			case 'p':
				ioctl(fd, 0, 1);
				break;
			case 'P':
				ioctl(fd, 1, 1);
				break;
			case 'l':
				lseek(fd, 0, SEEK_SET);//移动的文件的开头
				break;
				
			default:
				break;
		}
		sleep(1);
	}
	
	close(fd);
	return 0;
}

/**
*Copyright (c) 2013.TianYuan
*All rights reserved.
*
*文件名称: char_device_driver13_test1.c
*文件标识: test0 和 test1两个测试:此程序执行w,观察阻塞的r进程被唤醒,完成操作。
*
*当前版本:1.0
*作者:wuyq 
*
*取代版本:xxx
*原作者:xxx
*完成日期:2013-11-29
*/
#include <stdio.h>
#include <fcntl.h>
#include <stdlib.h>
#include <string.h>

/*手工创建设备节点文件
mknod /dev/cdd c 248 0
*/
int fd = 0;
char rbuf[100];
char wbuf[100] = "nihao!\n";


int main()
{
	char ch;
	
	fd = open("/dev/cdd1", O_RDWR);
	if(fd < 0){
		printf("open failed!\n");
		return -1;
	}
	printf("open successed fd = %d\n", fd);
	while(1)
	{
		printf("starting to test /dev/cdd...\n");
		ch = getchar();
		getchar();//取走回车
		if(ch == 'q'){
			break;
		}
		switch(ch){
			case 'r':
				memset(rbuf, 0, 100);//清空
				read(fd, rbuf, 3);
				printf("user space from kernel: %s\n", rbuf);
				break;
			case 'w':
				write(fd, wbuf, strlen(wbuf) );
				break;
			case 'o':
				ioctl(fd, 0, 0);
				break;
			case 'O':
				ioctl(fd, 1, 0);
				break;
			case 'p':
				ioctl(fd, 0, 1);
				break;
			case 'P':
				ioctl(fd, 1, 1);
				break;
			case 'l':
				lseek(fd, 0, SEEK_SET);//移动的文件的开头
				break;
				
			default:
				break;
		}
		sleep(1);
	}
	
	close(fd);
	return 0;
}



目录
相关文章
|
11天前
|
算法 Linux 调度
深入理解Linux内核调度器:从基础到优化####
本文旨在通过剖析Linux操作系统的心脏——内核调度器,为读者揭开其高效管理CPU资源的神秘面纱。不同于传统的摘要概述,本文将直接以一段精简代码片段作为引子,展示一个简化版的任务调度逻辑,随后逐步深入,详细探讨Linux内核调度器的工作原理、关键数据结构、调度算法演变以及性能调优策略,旨在为开发者与系统管理员提供一份实用的技术指南。 ####
45 4
|
14天前
|
缓存 算法 Linux
深入理解Linux内核调度器:公平性与性能的平衡####
真知灼见 本文将带你深入了解Linux操作系统的核心组件之一——完全公平调度器(CFS),通过剖析其设计原理、工作机制以及在实际系统中的应用效果,揭示它是如何在众多进程间实现资源分配的公平性与高效性的。不同于传统的摘要概述,本文旨在通过直观且富有洞察力的视角,让读者仿佛亲身体验到CFS在复杂系统环境中游刃有余地进行任务调度的过程。 ####
36 6
|
5天前
|
算法 Linux 开发者
Linux内核中的锁机制:保障并发控制的艺术####
本文深入探讨了Linux操作系统内核中实现的多种锁机制,包括自旋锁、互斥锁、读写锁等,旨在揭示这些同步原语如何高效地解决资源竞争问题,保证系统的稳定性和性能。通过分析不同锁机制的工作原理及应用场景,本文为开发者提供了在高并发环境下进行有效并发控制的实用指南。 ####
|
13天前
|
缓存 资源调度 安全
深入探索Linux操作系统的心脏——内核配置与优化####
本文作为一篇技术性深度解析文章,旨在引领读者踏上一场揭秘Linux内核配置与优化的奇妙之旅。不同于传统的摘要概述,本文将以实战为导向,直接跳入核心内容,探讨如何通过精细调整内核参数来提升系统性能、增强安全性及实现资源高效利用。从基础概念到高级技巧,逐步揭示那些隐藏在命令行背后的强大功能,为系统管理员和高级用户打开一扇通往极致性能与定制化体验的大门。 --- ###
41 9
|
12天前
|
缓存 负载均衡 Linux
深入理解Linux内核调度器
本文探讨了Linux操作系统核心组件之一——内核调度器的工作原理和设计哲学。不同于常规的技术文章,本摘要旨在提供一种全新的视角来审视Linux内核的调度机制,通过分析其对系统性能的影响以及在多核处理器环境下的表现,揭示调度器如何平衡公平性和效率。文章进一步讨论了完全公平调度器(CFS)的设计细节,包括它如何处理不同优先级的任务、如何进行负载均衡以及它是如何适应现代多核架构的挑战。此外,本文还简要概述了Linux调度器的未来发展方向,包括对实时任务支持的改进和对异构计算环境的适应性。
34 6
|
13天前
|
缓存 Linux 开发者
Linux内核中的并发控制机制:深入理解与应用####
【10月更文挑战第21天】 本文旨在为读者提供一个全面的指南,探讨Linux操作系统中用于实现多线程和进程间同步的关键技术——并发控制机制。通过剖析互斥锁、自旋锁、读写锁等核心概念及其在实际场景中的应用,本文将帮助开发者更好地理解和运用这些工具来构建高效且稳定的应用程序。 ####
32 5
|
14天前
|
Linux 开发工具 Perl
在Linux中,有一个文件,如何删除包含“www“字样的字符?
在Linux中,如果你想删除一个文件中包含特定字样(如“www”)的所有字符或行,你可以使用多种文本处理工具来实现。以下是一些常见的方法:
38 5
|
13天前
|
算法 Unix Linux
深入理解Linux内核调度器:原理与优化
本文探讨了Linux操作系统的心脏——内核调度器(Scheduler)的工作原理,以及如何通过参数调整和代码优化来提高系统性能。不同于常规摘要仅概述内容,本摘要旨在激发读者对Linux内核调度机制深层次运作的兴趣,并简要介绍文章将覆盖的关键话题,如调度算法、实时性增强及节能策略等。
|
14天前
|
存储 监控 安全
Linux内核调优的艺术:从基础到高级###
本文深入探讨了Linux操作系统的心脏——内核的调优方法。文章首先概述了Linux内核的基本结构与工作原理,随后详细阐述了内核调优的重要性及基本原则。通过具体的参数调整示例(如sysctl、/proc/sys目录中的设置),文章展示了如何根据实际应用场景优化系统性能,包括提升CPU利用率、内存管理效率以及I/O性能等关键方面。最后,介绍了一些高级工具和技术,如perf、eBPF和SystemTap,用于更深层次的性能分析和问题定位。本文旨在为系统管理员和高级用户提供实用的内核调优策略,以最大化Linux系统的效率和稳定性。 ###
|
13天前
|
Java Linux Android开发
深入探索Android系统架构:从Linux内核到应用层
本文将带领读者深入了解Android操作系统的复杂架构,从其基于Linux的内核到丰富多彩的应用层。我们将探讨Android的各个关键组件,包括硬件抽象层(HAL)、运行时环境、以及核心库等,揭示它们如何协同工作以支持广泛的设备和应用。通过本文,您将对Android系统的工作原理有一个全面的认识,理解其如何平衡开放性与安全性,以及如何在多样化的设备上提供一致的用户体验。
下一篇
无影云桌面