flashcache中内存与磁盘,磁盘与磁盘的io

简介: flashcache中跟磁盘相关的读写分为以下两类: 1)磁盘跟内存的交互 2)磁盘跟磁盘之前的交互 比如说读不命中时就是直接从磁盘读,属于第1种情况,那读命中呢?也是属于第1种情况,不过这时候是从SSD读。
flashcache中跟磁盘相关的读写分为以下两类:
1)磁盘跟内存的交互
2)磁盘跟磁盘之前的交互
比如说读不命中时就是直接从磁盘读,属于第1种情况,那读命中呢?也是属于第1种情况,不过这时候是从SSD读。磁盘跟磁盘之间交互是用于写脏数据,将SSD中脏cache块拷贝到磁盘上去。现在介绍下两种情况使用的接口函数,这样后面在看读写流程时看到这两个函数就十分亲切了,并且清楚地知道数据是从哪里流向哪里。
 
对于情况1,主要是两个函数dm_io_async_bvec和flashcache_dm_io_async_vm。
 
int dm_io_async_bvec(unsigned int num_regions, 
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,26)
                struct dm_io_region *where, 
#else
                struct io_region *where, 
#endif
                int rw, 
                struct bio_vec *bvec, io_notify_fn fn, 
                void *context)
{
    struct dm_io_request iorq;

    iorq.bi_rw = rw;
    iorq.mem.type = DM_IO_BVEC;
    iorq.mem.ptr.bvec = bvec;
    iorq.notify.fn = fn;
    iorq.notify.context = context;
    iorq.client = flashcache_io_client;
    return dm_io(&iorq, num_regions, where, NULL);
}
#endif

 

int 
flashcache_dm_io_async_vm(struct cache_c *dmc, unsigned int num_regions, 
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,26)
              struct io_region *where, 
#else
              struct dm_io_region *where, 
#endif
              int rw,
              void *data, io_notify_fn fn, void *context)
{
    unsigned long error_bits = 0;
    int error;
    struct dm_io_request io_req = {
        .bi_rw = rw,
        .mem.type = DM_IO_VMA,
        .mem.ptr.vma = data,
        .mem.offset = 0,
        .notify.fn = fn,
        .notify.context = context,
        .client = flashcache_io_client,
    };

    error = dm_io(&io_req, 1, where, &error_bits);
    if (error)
        return error;
    if (error_bits)
        return error_bits;
    return 0;
}
#endif

上面两个函数都使用struct dm_io_request 来包装了请求,其中的只有两种请求的类型是不一样的,第一个函数对应的是DM_IO_BVEC,第二个函数是DM_IO_VMA。

其实我开始一直不明白,为什么要使用这两个函数让硬盘与内存打交道,不过后来看了dm_io发现其中的io服务类型有多种不同类型,这两个函数的调用分别对应不同的io类型。下面先看一下dm_io相关的数据结构。

 dm_io

dm-io为device mapper提供同步或者异步的io服务。

使用dm-io必须设置dm_io_region结构(2.6.26版本以前叫io_region),该结构定义了io操作的区域,读一般针对一个dm_io_region区,而写可以针对一组dm_io_region区。

struct dm_io_region {
    struct block_device *bdev;
    sector_t sector;
    sector_t count;         /* If this is zero the region is ignored. */
};
 
老版本的内核,用户必须设置一个io_region结构来描述预期的I/O所在地。每个io_region说明了一个在区域上的有起始位置和长度的块设备。
 
struct io_region {
      struct block_device *bdev;
      sector_t sector;
      sector_t count;
   };
 
Dm-io 可以从一个io_region中读取或者写入到一个或者多个io_region中去。一个io_region结构数组指定了写入到多个区域。

dm-io一共有四种dm_io_mem_type类型(老一点的内核版本只有前面三种,Flashcache主要使用DM_IO_BVEC):

enum dm_io_mem_type {
    DM_IO_PAGE_LIST,/* Page list */
    DM_IO_BVEC,     /* Bio vector */
    DM_IO_VMA,      /* Virtual memory area */
    DM_IO_KMEM,     /* Kernel memory */
};

struct dm_io_memory {
    enum dm_io_mem_type type;
    union {
            struct page_list *pl;
            struct bio_vec *bvec;
            void *vma;
            void *addr;
    } ptr;

    unsigned offset;
};
Dm-io 提供同步和异步I/O服务。老一点的内核它提供了3种I/O服务,每种服务都有一个同步和一个异步的版本。
 
DM_IO_PAGE_LIST
第一个I/O服务类型使用了一串内存页作为缓冲区,伴随着一个首页面的偏移。
 
   struct page_list {
      struct page_list *next;
      struct page *page;
   };
 int dm_io_sync(unsigned int num_regions, struct io_region *where, int rw,
                  struct page_list *pl, unsigned int offset,
                  unsigned long *error_bits);
   int dm_io_async(unsigned int num_regions, struct io_region *where, int rw,
                   struct page_list *pl, unsigned int offset,
                   io_notify_fn fn, void *context);

 

DM_IO_BVEC
第二种I/O服务类型把一组bio载体当着I/O的数据缓冲。如果调用者提前拼装了bio,这个服务可以很顺利地完成。但是需要将不同的bio页指向不同的设备。
 
   int dm_io_sync_bvec(unsigned int num_regions, struct io_region *where,
                       int rw, struct bio_vec *bvec,
                       unsigned long *error_bits);
   int dm_io_async_bvec(unsigned int num_regions, struct io_region *where,
                        int rw, struct bio_vec *bvec,
                        io_notify_fn fn, void *context);
 
DM_IO_VMA
 
第三种I/O服务类型把一个指向虚拟动态内存缓冲区的的指针当作I/O的数据缓冲。如果调用者需要在很大的块设备上进行I/O操作又不想分配大量的个人内存页,那么这种服务可以胜任。
 
 int dm_io_sync_vm(unsigned int num_regions, struct io_region *where, int rw,
                     void *data, unsigned long *error_bits);
   int dm_io_async_vm(unsigned int num_regions, struct io_region *where, int rw,
                      void *data, io_notify_fn fn, void *context);
 
异步I/O服务的调用者必须包含一个完成的回调函数和一个指向一些这个I/O内容数据的指针。
 
typedef void (*io_notify_fn)(unsigned long error, void *context);
 
这个"error"参数,就像这个"*error"参数在任何同步版本中一样,在这个回调函数中就象一个位集合(而不是一个简单的错误值)。

在写I/O到多个目标区域的情况下,这个位集合允许dm-io说明在每个单独的区域上的成功或者失败。
在使用任何dm-io服务之前,用户必须调用dm_io_get()、同时指定他们想要的页数来执行I/O.
DM-io将尝试着更改自己的内存池的大小来确认在执行i/o时为了避免不必要的等待而有足够的页面来供给。
当用户完成了使用I/O服务,他们将调用dm_io_put(),并指定和给dm_io_get()的相同数量的页面。
 

dm-io通过dm_io_request结构来封装请求的类型,如果设置了dm_io_notify.fn则是异步IO,否则是同步IO。

struct dm_io_request {
    int bi_rw;                      /* READ|WRITE - not READA */
    struct dm_io_memory mem;        /* Memory to use for io */
    struct dm_io_notify notify;     /* Synchronous if notify.fn is NULL */
    struct dm_io_client *client;    /* Client memory handler */
};

使用dm_io服务前前需要通过dm_io_client_create函数(在2.6.22版本前是dm_io_get)先创建dm_io_client结构,为dm-io的执行过程中分配内存池。使用dm-io服务完毕后,则需要调用dm_io_client_destroy函数(在2.6.22版本前是dm_io_put)释放内存池。

struct dm_io_client {
    mempool_t *pool;
    struct bio_set *bios;
};

 

dm-io函数执行具体的io请求。

int dm_io(struct dm_io_request *io_req, unsigned num_regions,
      struct dm_io_region *where, unsigned long *sync_error_bits)
{
    int r;
    struct dpages dp;

    r = dp_init(io_req, &dp);
    if (r)
            return r;

    if (!io_req->notify.fn)
            return sync_io(io_req->client, num_regions, where,
                           io_req->bi_rw, &dp, sync_error_bits);

    return async_io(io_req->client, num_regions, where, io_req->bi_rw,
                    &dp, io_req->notify.fn, io_req->notify.context);
}

对于第二种情况,磁盘跟磁盘之前的交互。这种情况只用于将ssd中脏块写入disk中。

int dm_kcopyd_copy(struct dm_kcopyd_client *kc, struct dm_io_region *from,
                   unsigned int num_dests, struct dm_io_region *dests,
                   unsigned int flags, dm_kcopyd_notify_fn fn, void *context)

第一个参数dm_kcopyd_client,在使用kcopyd异步拷贝服务时,必须先创建一个对应的client,首先要分配“kcopyd客户端”结构,调用函数如下:

kcopyd_client_create(FLASHCACHE_COPY_PAGES, &flashcache_kcp_client);

创建dm_kcopyd_client结构。

第二个参数dm_io_region是源地址,第四个参数是目的地址,定义如下
struct dm_io_region {
     struct block_device *bdev;
     sector_t sector;
     sector_t count;          /* If this is zero the region is ignored. */
};
dm_kcopyd_notify_fn fn是kcopyd处理完请求的回调函数
context 是回调函数参数,在flashcache都设置对应的kcached_job。
相关文章
|
18天前
|
存储 关系型数据库 MySQL
查询服务器CPU、内存、磁盘、网络IO、队列、数据库占用空间等等信息
查询服务器CPU、内存、磁盘、网络IO、队列、数据库占用空间等等信息
191 2
|
2月前
|
存储 关系型数据库 MySQL
查询服务器CPU、内存、磁盘、网络IO、队列、数据库占用空间等等信息
查询服务器CPU、内存、磁盘、网络IO、队列、数据库占用空间等等信息
128 5
|
1月前
|
C# 开发工具 Windows
C# 获取Windows系统信息以及CPU、内存和磁盘使用情况
C# 获取Windows系统信息以及CPU、内存和磁盘使用情况
42 0
|
3月前
内存或磁盘不足,excel无法再次打开或保存任何文档
内存或磁盘不足,excel无法再次打开或保存任何文档
|
3月前
|
存储 缓存 Linux
在Linux中,内存怎么看?磁盘状态怎么看?
在Linux中,内存怎么看?磁盘状态怎么看?
|
3月前
|
NoSQL Redis 数据库
Redis AOF重写问题之同一数据产生两次磁盘IO如何解决
Redis AOF重写问题之同一数据产生两次磁盘IO如何解决
Redis AOF重写问题之同一数据产生两次磁盘IO如何解决
|
2月前
crash —— 获取系统的磁盘IO统计数据
crash —— 获取系统的磁盘IO统计数据
|
3月前
|
存储 NoSQL Java
Tair的发展问题之Tair对于不同存储介质(如内存和磁盘)的线程分配是如何处理的
Tair的发展问题之Tair对于不同存储介质(如内存和磁盘)的线程分配是如何处理的
有 3 个进程 P1、P2、P3 协作解决文件打印问题。P1 将文件记录从磁盘读入内存的缓冲区 1,每执行一次读一个记录 ;P2 将缓冲区 1 中的内容复制到缓冲区 2 中,每执行一次复制一个记录 ;
有 3 个进程 P1、P2、P3 协作解决文件打印问题。P1 将文件记录从磁盘读入内存的缓冲区 1,每执行一次读一个记录 ;P2 将缓冲区 1 中的内容复制到缓冲区 2 中,每执行一次复制一个记录 ;
|
6月前
|
运维 Linux Docker
Docker详解(十三)——Docker容器的内存和磁盘I/O限制配置
Docker详解(十三)——Docker容器的内存和磁盘I/O限制配置
465 1