Sqoop导入到hdfs

简介:  1.注意win下直接复制进linux 改一下--等 sqoop-list-databases --connect jdbc:mysql://122.206.79.212:3306/ --username root -P     先看一下有什么数据库,发现有些数据库,能查询到的数据库才能导入,很奇怪。

 

 1.注意win下直接复制进linux 改一下--等

sqoop-list-databases --connect jdbc:mysql://122.206.79.212:3306/ --username root -P 

  

 先看一下有什么数据库,发现有些数据库,能查询到的数据库才能导入,很奇怪。

 

2.导入到hdfs

sqoop import  --connect jdbc:mysql://122.206.79.212:3306/dating --username root --password 123456 --table t_rec_top --driver com.mysql.jdbc.Driver 

  那个数据库 端口号 账户名 密码 那个表 不需要加上驱动  那没指定导入到hdfs的哪,肯定会有默认位置的

可以看出只有map任务 没有reduce任务

Warning: /home/hxsyl/Spark_Relvant/sqoop-1.4.6.bin__hadoop-2.0.4-alpha/../hcatalog does not exist! HCatalog jobs will fail.
Please set $HCAT_HOME to the root of your HCatalog installation.
Warning: /home/hxsyl/Spark_Relvant/sqoop-1.4.6.bin__hadoop-2.0.4-alpha/../accumulo does not exist! Accumulo imports will fail.
Please set $ACCUMULO_HOME to the root of your Accumulo installation.
17/03/15 11:05:12 INFO sqoop.Sqoop: Running Sqoop version: 1.4.6
17/03/15 11:05:12 WARN tool.BaseSqoopTool: Setting your password on the command-line is insecure. Consider using -P instead.
17/03/15 11:05:12 WARN sqoop.ConnFactory: Parameter --driver is set to an explicit driver however appropriate connection manager is not being set (via --connection-manager). Sqoop is going to fall back to org.apache.sqoop.manager.GenericJdbcManager. Please specify explicitly which connection manager should be used next time.
17/03/15 11:05:12 INFO manager.SqlManager: Using default fetchSize of 1000
17/03/15 11:05:12 INFO tool.CodeGenTool: Beginning code generation
17/03/15 11:05:13 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM t_rec_top AS t WHERE 1=0
17/03/15 11:05:13 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM t_rec_top AS t WHERE 1=0
17/03/15 11:05:13 INFO orm.CompilationManager: HADOOP_MAPRED_HOME is /home/hxsyl/Spark_Relvant/hadoop-2.6.4/share/hadoop/mapreduce
Note: /tmp/sqoop-hxsyl/compile/ddeeb02cdbd25cddc2662317b89c80f1/t_rec_top.java uses or overrides a deprecated API.
Note: Recompile with -Xlint:deprecation for details.
17/03/15 11:05:18 INFO orm.CompilationManager: Writing jar file: /tmp/sqoop-hxsyl/compile/ddeeb02cdbd25cddc2662317b89c80f1/t_rec_top.jar
17/03/15 11:05:18 INFO mapreduce.ImportJobBase: Beginning import of t_rec_top
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/home/hxsyl/Spark_Relvant/hadoop-2.6.4/share/hadoop/common/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/home/hxsyl/Spark_Relvant/hbase-1.2.4/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
17/03/15 11:05:19 INFO Configuration.deprecation: mapred.jar is deprecated. Instead, use mapreduce.job.jar
17/03/15 11:05:19 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM t_rec_top AS t WHERE 1=0
17/03/15 11:05:21 INFO Configuration.deprecation: mapred.map.tasks is deprecated. Instead, use mapreduce.job.maps
17/03/15 11:05:21 INFO client.RMProxy: Connecting to ResourceManager at CentOSMaster/192.168.58.180:8032
17/03/15 11:05:28 INFO db.DBInputFormat: Using read commited transaction isolation
17/03/15 11:05:28 INFO db.DataDrivenDBInputFormat: BoundingValsQuery: SELECT MIN(id), MAX(id) FROM t_rec_top
17/03/15 11:05:28 INFO mapreduce.JobSubmitter: number of splits:1
17/03/15 11:05:29 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1489547007191_0001
17/03/15 11:05:30 INFO impl.YarnClientImpl: Submitted application application_1489547007191_0001
17/03/15 11:05:31 INFO mapreduce.Job: The url to track the job: http://CentOSMaster:8088/proxy/application_1489547007191_0001/
17/03/15 11:05:31 INFO mapreduce.Job: Running job: job_1489547007191_0001
17/03/15 11:05:48 INFO mapreduce.Job: Job job_1489547007191_0001 running in uber mode : false
17/03/15 11:05:48 INFO mapreduce.Job:  map 0% reduce 0%
17/03/15 11:06:06 INFO mapreduce.Job:  map 100% reduce 0%
17/03/15 11:06:07 INFO mapreduce.Job: Job job_1489547007191_0001 completed successfully
17/03/15 11:06:07 INFO mapreduce.Job: Counters: 30
	File System Counters
		FILE: Number of bytes read=0
		FILE: Number of bytes written=127058
		FILE: Number of read operations=0
		FILE: Number of large read operations=0
		FILE: Number of write operations=0
		HDFS: Number of bytes read=99
		HDFS: Number of bytes written=21
		HDFS: Number of read operations=4
		HDFS: Number of large read operations=0
		HDFS: Number of write operations=2
	Job Counters 
		Launched map tasks=1
		Other local map tasks=1
		Total time spent by all maps in occupied slots (ms)=13150
		Total time spent by all reduces in occupied slots (ms)=0
		Total time spent by all map tasks (ms)=13150
		Total vcore-milliseconds taken by all map tasks=13150
		Total megabyte-milliseconds taken by all map tasks=13465600
	Map-Reduce Framework
		Map input records=1
		Map output records=1
		Input split bytes=99
		Spilled Records=0
		Failed Shuffles=0
		Merged Map outputs=0
		GC time elapsed (ms)=183
		CPU time spent (ms)=1200
		Physical memory (bytes) snapshot=107761664
		Virtual memory (bytes) snapshot=2069635072
		Total committed heap usage (bytes)=30474240
	File Input Format Counters 
		Bytes Read=0
	File Output Format Counters 
		Bytes Written=21
17/03/15 11:06:07 INFO mapreduce.ImportJobBase: Transferred 21 bytes in 46.7701 seconds (0.449 bytes/sec)
17/03/15 11:06:07 INFO mapreduce.ImportJobBase: Retrieved 1 records.

  

创建一个user/yonhumig的目录,其中t_rec_top里就是我们的数据,不过没有标头,可以看出只是以m,表示map任务就结束了

wc00是配置文件

"AS	1
"License");	1
${yarn.nodemanager.local-dirs}/usercache/${user}/appcache/application_${appid}.	1
(the	1
-->	3
2.0	1
<!--	3
</configuration>	1
</description>	1
</property>	15
<?xml	1
<configuration>	1
<description>Amount	1
<description>List	1
<description>Number	1
<description>The	7
<description>Where	1
<description>Whether	1
<description>fair-scheduler	1
<description>the	1
<name>yarn.log-aggregation-enable</name>	1
<name>yarn.nodemanager.aux-services</name>	1
<name>yarn.nodemanager.local-dirs</name>	1
<name>yarn.nodemanager.remote-app-log-dir</name>	1
<name>yarn.nodemanager.resource.cpu-vcores</name>	1
<name>yarn.nodemanager.resource.memory-mb</name>	1
<name>yarn.resourcemanager.address</name>	1
<name>yarn.resourcemanager.admin.address</name>	1
<name>yarn.resourcemanager.hostname</name>	1
<name>yarn.resourcemanager.resource-tracker.address</name>	1
<name>yarn.resourcemanager.scheduler.address</name>	1
<name>yarn.resourcemanager.scheduler.class</name>	1
<name>yarn.resourcemanager.webapp.address</name>	1
<name>yarn.resourcemanager.webapp.https.address</name>	1
<name>yarn.scheduler.fair.allocation.file</name>	1
<property>	15
<value>${yarn.home.dir}/etc/hadoop/fairscheduler.xml</value>	1
<value>${yarn.resourcemanager.hostname}:8030</value>	1
<value>${yarn.resourcemanager.hostname}:8031</value>	1
<value>${yarn.resourcemanager.hostname}:8032</value>	1
<value>${yarn.resourcemanager.hostname}:8033</value>	1
<value>${yarn.resourcemanager.hostname}:8088</value>	1
<value>${yarn.resourcemanager.hostname}:8090</value>	1
<value>/home/hxsyl/Spark_Relvant/yarn/local</value>	1
<value>/tmp/logs</value>	1
<value>12</value>	1
<value>30720</value>	1
<value>CentOSMaster</value>	1
<value>mapreduce_shuffle</value>	1
<value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.fair.FairScheduler</value>	1
<value>true</value>	1
ANY	1
An	1
Apache	1
BASIS,	1
CONDITIONS	1
CPU	1
Configs	1
IS"	1
Individual	1
KIND,	1
LICENSE	1
License	3
License,	1
License.	2
Licensed	1
MB,	1
Manager	1
OF	1
OR	1
RM	3
RM.</description>	2
Resource	1
See	2
Site	1
Unless	1
Version	1
WARRANTIES	1
WITHOUT	1
YARN	1
You	1
a	1
a-zA-Z0-9_	1
accompanying	1
adddress	1
address	4
admin	1
aggregate	1
aggregation</description>	1
agreed	1
allocated	2
an	1
and	2
applicable	1
application's	1
application.</description>	2
applications	1
as	1
at	1
be	4
by	1
called	1
can	3
class	1
compliance	1
conf	1
configuration	1
contain	1
container_${contid},	1
containers'	1
containers.</description>	2
copy	1
cores	1
directories	1
directories,	1
directory	1
distributed	2
either	1
enable	1
except	1
express	1
file	2
file.	1
files	1
for	3
found	1
governing	1
hostname	1
http	1
http://www.apache.org/licenses/LICENSE-2.0	1
https	1
implied.	1
in	4
in.	1
in:	1
interface	1
interface.</description>	2
is	1
language	1
law	1
limitations	1
localized	2
location</description>	1
log	1
logs	1
manager	1
may	2
memory,	1
name	1
not	2
numbers</description>	1
obtain	1
of	11
on	1
only	1
or	2
permissions	1
physical	1
properties	1
required	1
resource	1
scheduler	1
scheduler.</description>	1
service	1
should	1
software	1
specific	2
start	1
store	1
subdirectories	1
that	2
the	15
this	1
this.	1
to	5
to.</description>	1
under	3
use	2
valid	1
version="1.0"?>	1
web	2
will	2
with	2
work	1
writing,	1
you	1

  

 --target-dir  /path       放到那个路径        -m :标书numberMapper

 

从hdfs上打开的文件可以看出  默认是逗号       --fields-terminated-by '\t'   这个分隔符不是为了写入到hdfs来分割,而是原始数据的分隔符

--columns 'id,account,income'    只导入某些特定的列

 

符合特定条件的列才被导入,--where "id>2 and id <9"

 

从多个表查询或者指定查询语句  --query "select * form t_detail where id >5 and $CONDITIONS"      $那个必须加 

但是如果-m大于1 就需要指定各个Mapper读取几条记录或者找分隔符 --split-by t_detail.id   $CONDITIONS就是根据分割的信息找到记录条数,进而切分数据,

 

建议使用单引号 使用双引号需要转义, --后边跟的是全称 -是简写

 

 

单引号与双引号的最大不同在于双引号仍然可以保有变量的内容,但单引号内仅能是
一般字符 ,而不会有特殊符号。我们以底下的例子做说明:假设您定义了一个变量, 
name=VBird ,现在想以 name 这个变量的内容定义出 myname 显示 VBird its me 这
个内容,要如何订定呢? 

[root@linux ~]# name=VBird 
[root@linux ~]# echo $name 
VBird 
[root@linux ~]# myname="$name its me" 
[root@linux ~]# echo $myname 
VBird its me 
[root@linux ~]# myname='$name its me' 
[root@linux ~]# echo $myname 
$name its me 

发现了吗?没错!使用了单引号的时候,那么 $name 将失去原有的变量内容, 仅为
一般字符的显示型态而已!这里必需要特别小心在意!

 

目录
相关文章
|
2月前
|
SQL 分布式计算 关系型数据库
Hadoop-24 Sqoop迁移 MySQL到Hive 与 Hive到MySQL SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
Hadoop-24 Sqoop迁移 MySQL到Hive 与 Hive到MySQL SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
103 0
|
2月前
|
SQL 分布式计算 关系型数据库
Hadoop-23 Sqoop 数据MySQL到HDFS(部分) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
Hadoop-23 Sqoop 数据MySQL到HDFS(部分) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
47 0
|
2月前
|
SQL 分布式计算 关系型数据库
Hadoop-22 Sqoop 数据MySQL到HDFS(全量) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
Hadoop-22 Sqoop 数据MySQL到HDFS(全量) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
57 0
|
7月前
|
SQL 关系型数据库 MySQL
Sqoop【付诸实践 01】Sqoop1最新版 MySQL与HDFS\Hive\HBase 核心导入导出案例分享+多个WRAN及Exception问题处理(一篇即可学会在日常工作中使用Sqoop)
【2月更文挑战第9天】Sqoop【付诸实践 01】Sqoop1最新版 MySQL与HDFS\Hive\HBase 核心导入导出案例分享+多个WRAN及Exception问题处理(一篇即可学会在日常工作中使用Sqoop)
302 7
|
6月前
|
SQL 关系型数据库 MySQL
基于Hive的天气情况大数据分析系统(通过hive进行大数据分析将分析的数据通过sqoop导入到mysql,通过Django基于mysql的数据做可视化)
基于Hive的天气情况大数据分析系统(通过hive进行大数据分析将分析的数据通过sqoop导入到mysql,通过Django基于mysql的数据做可视化)
231 0
|
7月前
|
SQL Java 数据库
Sqoop【付诸实践 02】Sqoop1最新版 全库导入 + 数据过滤 + 字段类型支持 说明及举例代码(query参数及字段类型强制转换)
【2月更文挑战第10天】Sqoop【付诸实践 02】Sqoop1最新版 全库导入 + 数据过滤 + 字段类型支持 说明及举例代码(query参数及字段类型强制转换)
350 0
|
7月前
|
消息中间件 分布式计算 关系型数据库
Sqoop与Kafka的集成:实时数据导入
Sqoop与Kafka的集成:实时数据导入
Sqoop与Kafka的集成:实时数据导入
|
7月前
|
分布式计算 Hadoop 关系型数据库
使用Sqoop将数据导入Hadoop的详细教程
使用Sqoop将数据导入Hadoop的详细教程
|
7月前
|
SQL 分布式计算 监控
Sqoop数据迁移工具使用与优化技巧:面试经验与必备知识点解析
【4月更文挑战第9天】本文深入解析Sqoop的使用、优化及面试策略。内容涵盖Sqoop基础,包括安装配置、命令行操作、与Hadoop生态集成和连接器配置。讨论数据迁移优化技巧,如数据切分、压缩编码、转换过滤及性能监控。此外,还涉及面试中对Sqoop与其他ETL工具的对比、实际项目挑战及未来发展趋势的讨论。通过代码示例展示了从MySQL到HDFS的数据迁移。本文旨在帮助读者在面试中展现Sqoop技术实力。
552 2
|
数据采集 SQL 分布式计算
数据处理 、大数据、数据抽取 ETL 工具 DataX 、Kettle、Sqoop
数据处理 、大数据、数据抽取 ETL 工具 DataX 、Kettle、Sqoop
1462 0

热门文章

最新文章

下一篇
DataWorks