快速定位隐蔽的sql性能问题及调优

简介: 在前几天,有个开发同事问我一个问题,其实也算是技术救援,他说在有个job数据处理的频率比较高,在测试环境中很难定位出在哪有问题,而且速度也还能接受,但是在生产环境中总是会慢一些,希望我能在测试环境中协助他们,看看是不是sql语句出什么问题了还是其它相关的问题。
在前几天,有个开发同事问我一个问题,其实也算是技术救援,他说在有个job数据处理的频率比较高,在测试环境中很难定位出在哪有问题,而且速度也还能接受,但是在生产环境中总是会慢一些,希望我能在测试环境中协助他们,看看是不是sql语句出什么问题了还是其它相关的问题。
这种类似实时监控的语句,从第一印象来说,很可能通过awr捕获不到,如果通过ash来捕获,因为测试环境中有几十套测试环境在运行,就算得到某个时间点的一些sql语句,直接在报告中映射到语句对应的schema信息还是有一些困难的。因为测试时间确实很短,有很多的语句执行了,可能不一定被ash收集到。
我和他首先做了沟通,因为我压根不知道这是哪个应用的环境,所以先需要几分钟的时间来熟悉一下环境,提前准备一下。
数据库中存在大概50套测试环境,占用的session数大概在4000个左右。整体来看测试环境中的数据量都不大。每个环境都大概在10G-30G以内。
定位到制定的测试环境中,发现session占用情况也不高。都是一些常规的job使用,没有看到其它明显的session消耗,查看相关的锁信息,也没有发现什么问题。
简单确认之后,发现awr在这个时候是用不了了,最多使用下ash来看,除此之外,还可以使用脚本实时监控。
类似下面这样的操作。
> getash.sh
I    SID   SER# USERNAME     OSUSER     STA RPID    SPID   MACHINE    PROGRAM              ELAP_SEC    TEMP_MB UNDO_MB SQL_ID        TSPS   SQL
-- ------ ------ ------------ ---------- --- ------- ------ ---------- -------------------- ----------- ------- ------- ------------- ------ -------------------------------------------------
 1     19  16945 xxxx    blwrk01   ACT 9442    9442   ccbdbprx   oracle@xxxxxx  00 05:35:02                 b9xg175fbzuk5        INSERT INTO xxxx (CYCLE_SEQ_NO, PAY

上面的语句也可以通过watch来指定频率看到每个用户下的信息实时变化情况。监控的过程中确实也能看到不少的信息变化,但是执行的时间确实很短,只能够抓取到一部分sql语句。简单分析了下,那些语句都没有发现有什么问题。
这个时候还是得靠开发协助,希望他们提示一些更细节的信息,这个业务场景要做的事情和一些指定的数据,他们提供说使用了某个表中资源号为 x271051128的数据,这个时候通过v$sql从缓存中就能够快速定位到语句,这个时候再和ash配合起来就能够确认是否是相关的用户在调用了。
最后抓取到了几条语句,和开发确认之后定位到一条语句,语句类似下面这样的形式。

select owner_id,

       l3_balance_amount,

       expiration_date,

       customer_id,

       c64_1,

       l3_balance_Status,

       sys_update_date,

       sys_creation_Date

  from accumulators

where customer_id in

       (select customer_id

          from subscriber

         where prim_Resource_Val in ('x271051128'))

   and owner_type = 'P'
通过抓取执行计划,发现subscriber表走了全表扫描。这个对应生产环境中的性能影响还是比较大的。


对于这个问题的调优,其实可以完全通过业务层面来优化,可以参考http://blog.itpub.net/23718752/viewspace-1312163/
问题是类似的,略有不同。我们可以引入一个更大的资源表,资源表agreement_resource和用户表subscriber,使用索引字段来关联,就避免了subscriber表的全表扫描。
调整后的语句如下:

select owner_id,

       l3_balance_amount,

       expiration_date,

       customer_id,

       c64_1,

       l3_balance_Status,

       sys_update_date,

       sys_creation_Date

  from ape1_accumulators

where customer_id in

       (

       select customer_id

  from subscriber s

where (subscriber_no, PRIM_RESOURCE_TP) in

       (select agreement_no, RESOURCE_TYPE

          from agreement_resource r

         where r.resource_value in ('x271051128'))

       )

   and owner_type = 'P'
通过调整后的执行计划可以看出,性能的提升还是很大的。这个是测试环境的数据,如果在数据量大的时候,优势就更加明显了。



所以对于这个问题,起因是 有个job数据处理的 频率比较高,在测试环境中很难定位出在哪有问题 ,而且速度也还能接受, 但是在生产环境中总是会慢一些,其实深究起来还是有原因的,只能通过各种细节去诊断发现了。
目录
相关文章
|
4月前
|
SQL 关系型数据库 MySQL
为什么这些 SQL 语句逻辑相同,性能却差异巨大?
我是小假 期待与你的下一次相遇 ~
245 0
|
11月前
|
SQL 运维 监控
SQL查询太慢?实战讲解YashanDB SQL调优思路
本文是Meetup第十期“调优实战专场”的第二篇技术文章,上一篇《高效查询秘诀,解码YashanDB优化器分组查询优化手段》中,我们揭秘了YashanDB分组查询优化秘诀,本文将通过一个案例,助你快速上手YashanDB慢日志功能,精准定位“慢SQL”后进行优化。
|
8月前
|
SQL 关系型数据库 PostgreSQL
CTE vs 子查询:深入拆解PostgreSQL复杂SQL的隐藏性能差异
本文深入探讨了PostgreSQL中CTE(公共表表达式)与子查询的选择对SQL性能的影响。通过分析两者底层机制,揭示CTE的物化特性及子查询的优化融合优势,并结合多场景案例对比执行效率。最终给出决策指南,帮助开发者根据数据量、引用次数和复杂度选择最优方案,同时提供高级优化技巧和版本演进建议,助力SQL性能调优。
873 1
|
9月前
|
SQL 关系型数据库 MySQL
凌晨2点报警群炸了:一条sql 执行200秒!搞定之后,我总结了一个慢SQL查询、定位分析解决的完整套路
凌晨2点报警群炸了:一条sql 执行200秒!搞定之后,我总结了一个慢SQL查询、定位分析解决的完整套路
凌晨2点报警群炸了:一条sql 执行200秒!搞定之后,我总结了一个慢SQL查询、定位分析解决的完整套路
|
10月前
|
SQL 关系型数据库 MySQL
大数据新视界--大数据大厂之MySQL数据库课程设计:MySQL 数据库 SQL 语句调优方法详解(2-1)
本文深入介绍 MySQL 数据库 SQL 语句调优方法。涵盖分析查询执行计划,如使用 EXPLAIN 命令及理解关键指标;优化查询语句结构,包括避免子查询、减少函数使用、合理用索引列及避免 “OR”。还介绍了索引类型知识,如 B 树索引、哈希索引等。结合与 MySQL 数据库课程设计相关文章,强调 SQL 语句调优重要性。为提升数据库性能提供实用方法,适合数据库管理员和开发人员。
|
10月前
|
关系型数据库 MySQL 大数据
大数据新视界--大数据大厂之MySQL 数据库课程设计:MySQL 数据库 SQL 语句调优的进阶策略与实际案例(2-2)
本文延续前篇,深入探讨 MySQL 数据库 SQL 语句调优进阶策略。包括优化索引使用,介绍多种索引类型及避免索引失效等;调整数据库参数,如缓冲池、连接数和日志参数;还有分区表、垂直拆分等其他优化方法。通过实际案例分析展示调优效果。回顾与数据库课程设计相关文章,强调全面认识 MySQL 数据库重要性。为读者提供综合调优指导,确保数据库高效运行。
|
11月前
|
SQL 关系型数据库 MySQL
如何优化SQL查询以提高数据库性能?
这篇文章以生动的比喻介绍了优化SQL查询的重要性及方法。它首先将未优化的SQL查询比作在自助餐厅贪多嚼不烂的行为,强调了只获取必要数据的必要性。接着,文章详细讲解了四种优化策略:**精简选择**(避免使用`SELECT *`)、**专业筛选**(利用`WHERE`缩小范围)、**高效联接**(索引和限制数据量)以及**使用索引**(加速搜索)。此外,还探讨了如何避免N+1查询问题、使用分页限制结果、理解执行计划以及定期维护数据库健康。通过这些技巧,可以显著提升数据库性能,让查询更高效流畅。
|
12月前
|
SQL 关系型数据库 OLAP
云原生数据仓库AnalyticDB PostgreSQL同一个SQL可以实现向量索引、全文索引GIN、普通索引BTREE混合查询,简化业务实现逻辑、提升查询性能
本文档介绍了如何在AnalyticDB for PostgreSQL中创建表、向量索引及混合检索的实现步骤。主要内容包括:创建`articles`表并设置向量存储格式,创建ANN向量索引,为表增加`username`和`time`列,建立BTREE索引和GIN全文检索索引,并展示了查询结果。参考文档提供了详细的SQL语句和配置说明。
451 2
|
SQL Oracle 关系型数据库
如何在 Oracle 中配置和使用 SQL Profiles 来优化查询性能?
在 Oracle 数据库中,SQL Profiles 是优化查询性能的工具,通过提供额外统计信息帮助生成更有效的执行计划。配置和使用步骤包括:1. 启用自动 SQL 调优;2. 手动创建 SQL Profile,涉及收集、执行调优任务、查看报告及应用建议;3. 验证效果;4. 使用 `DBA_SQL_PROFILES` 视图管理 Profile。
|
SQL 数据库 UED
SQL性能提升秘籍:5步优化法与10个实战案例
在数据库管理和应用开发中,SQL查询的性能优化至关重要。高效的SQL查询不仅可以提高应用的响应速度,还能降低服务器负载,提升用户体验。本文将分享SQL优化的五大步骤和十个实战案例,帮助构建高效、稳定的数据库应用。
1280 3