教你用深度学习LSTM网络预测流行音乐趋势(附代码)

简介: 一、 LSTM网络原理 1.1 要点介绍 LSTM网络用来处理带“序列”(sequence)性质的数据。比如时间序列的数据,像每天的股价走势情况,机械振动信号的时域波形,以及类似于自然语言这种本身带有顺序性质的由有序单词组合的数据。

一、 LSTM网络原理


1.1 要点介绍

  • LSTM网络用来处理带“序列”(sequence)性质的数据。比如时间序列的数据,像每天的股价走势情况,机械振动信号的时域波形,以及类似于自然语言这种本身带有顺序性质的由有序单词组合的数据。 
  • LSTM本身不是一个独立存在的网络结构,只是整个神经网络的一部分,即由LSTM结构取代原始网络中的隐层单元部分。 
  • LSTM网络具有“记忆性”。其原因在于不同“时间点”之间的网络存在连接,而不是单个时间点处的网络存在前馈或者反馈。如下图2中的LSTM单元(隐层单元)所示。图3是不同时刻情况下的网络展开图。图中虚线连接代表时刻,“本身的网络”结构连接用实线表示。 

a0284214d814d64ddf6a20c48ab873d043c439f3

1.2 LSTM单元结构图 

图4,5是现在比较常用的LSTM单元结构示意图: 

039281d69ad4595eb104fc0a14a8a6947941fd88

其主要结构成分包含如下: 

  • 输入节点input node:接受上一时刻隐层单元的输出及当前时刻是样本输入; 
  • 输入门input gate:可以看到输入门会和输入节点的值相乘,组成LSTM中internal state单元值的一部分,当门的输出为1时,输入节点的激活值全部流向internal state,当门的输出为0时,输入节点的值对internal state没有影响。 
  • 内部状态internal state。 
  • 遗忘门forget gate:用于刷新internal state的状态,控制internal state的上一状态对当前状态的影响。 

各节点及门与隐藏单元输出的关系参见图4,图5所示。

二、代码示例

后台回复关键词“音乐”,下载完整代码及数据集

运行环境:windows下的spyder 
语言:python 2.7,以及Keras深度学习库。

由于看这个赛题前,没有一点Python基础,所以也是边想思路边学Python,对Python中的数据结构不怎么了解,所以代码写得有点烂。但整个代码是可以运行无误的。这也是初赛时代码的最终版本。

2.1 示例介绍 

主要以今年参加的“2016年阿里流行音乐趋势预测”为例。 

时间过得很快,今天已是第二赛季的最后一天了,我从5.18开始接触赛题,到6.14上午10点第一赛季截止,这一期间,由于是线下赛,可以用到各种模型,而自已又是做深度学习(deep learning)方向的研究,所以选择了基于LSTM的循环神经网络模型,结果也很幸运,进入到了第二赛季。开始接触深度学习也有大半年了,能够将自已所学用到这次真正的实际生活应用中,结果也还可以,自已感觉很欣慰。突然意识到,自已学习生涯这么多年,我想“学有所成,学有所用”该是我今后努力的方向和动力了吧。 

下面我简单的介绍一下赛题: 

官方给的“输入”,共两张表:

  • 一张是用户行为表(时间跨度20150301-20150830)mars_tianchi_user_actions,主要描述用户对歌曲的收藏,下载,播放等行为;
  • 一张是歌曲信息表mars_tianchi_songs,主要用来描述歌曲所属的艺人,及歌曲的相关信息,如发行时间,初始热度,语言等。 

637c25a050ad89376e953633b11b175c889792d2

样例: 

7dc6a39717ffa8da05ce55d5bc24a42f9127f804
样例: 

5b5e0af9a2687f6dd4015b00a59d38c316d63d2f

官方要求“输出”:预测随后2个月(20150901-20151030)每个歌手每天的播放量。输出格式: 

75f87ff0c44dcf9f5ada8f2294bef0492ae9d772
2.2 初赛所用模型思路 


由于是对歌手的播放量进行预测,所以直接对每个歌手的“播放量”这一对象进行统计,查看在20150301-20151030这8个月内歌手的播放量变化趋势,并以每天的播放量,连续3天的播放均值,连续3天的播放方差,作为一个时间点的样本,“滑动”构建神经网络的训练集。网络的构成如下: 

  • 输入层:3个神经元,分别代表播放量,播放均值,播放方差; 
  • 第一隐层:LSTM结构单元,带有35个LSTM单元; 
  • 第二隐层:LSTM结构单元,带有10个LSTM单元; 
  • 输出层:3个神经元,代表和输入层相同的含义。 

目标函数:重构误差。 

下图是某些歌手的播放统计曲线: 

5b74fd9e3246ea156028f63b765718434058284e

2.2 预测结果 


蓝色代表歌手真实的播放曲线,绿色代表预测曲线: 

d30cbd6274ef7ad0fa15573c1e8b9a9c22558a0a

原文发布时间为:2017-12-11

本文来自云栖社区合作伙伴“大数据文摘”,了解相关信息可以关注“x”微信公众号

相关文章
|
5天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
111 55
|
15天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
93 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
2天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于yolov4深度学习网络的公共场所人流密度检测系统matlab仿真,带GUI界面
本项目使用 MATLAB 2022a 进行 YOLOv4 算法仿真,实现公共场所人流密度检测。通过卷积神经网络提取图像特征,将图像划分为多个网格进行目标检测和识别,最终计算人流密度。核心程序包括图像和视频读取、处理和显示功能。仿真结果展示了算法的有效性和准确性。
47 31
|
8天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如"How are you"、"I am fine"、"I love you"等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
11天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的宝石类型识别算法matlab仿真
本项目利用GoogLeNet深度学习网络进行宝石类型识别,实验包括收集多类宝石图像数据集并按7:1:2比例划分。使用Matlab2022a实现算法,提供含中文注释的完整代码及操作视频。GoogLeNet通过其独特的Inception模块,结合数据增强、学习率调整和正则化等优化手段,有效提升了宝石识别的准确性和效率。
|
14天前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)##
在当今的人工智能领域,深度学习已成为推动技术革新的核心力量之一。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,因其在图像和视频处理方面的卓越性能而备受关注。本文旨在深入探讨CNN的基本原理、结构及其在实际应用中的表现,为读者提供一个全面了解CNN的窗口。 ##
|
15天前
|
机器学习/深度学习 人工智能 算法
深度学习入门:用Python构建你的第一个神经网络
在人工智能的海洋中,深度学习是那艘能够带你远航的船。本文将作为你的航标,引导你搭建第一个神经网络模型,让你领略深度学习的魅力。通过简单直观的语言和实例,我们将一起探索隐藏在数据背后的模式,体验从零开始创造智能系统的快感。准备好了吗?让我们启航吧!
42 3
|
21天前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
|
12天前
|
机器学习/深度学习 传感器 数据采集
深度学习在故障检测中的应用:从理论到实践
深度学习在故障检测中的应用:从理论到实践
57 5
|
4天前
|
机器学习/深度学习 网络架构 计算机视觉
深度学习在图像识别中的应用与挑战
【10月更文挑战第21天】 本文探讨了深度学习技术在图像识别领域的应用,并分析了当前面临的主要挑战。通过研究卷积神经网络(CNN)的结构和原理,本文展示了深度学习如何提高图像识别的准确性和效率。同时,本文也讨论了数据不平衡、过拟合、计算资源限制等问题,并提出了相应的解决策略。
36 19