教你用深度学习LSTM网络预测流行音乐趋势(附代码)

简介: 一、 LSTM网络原理 1.1 要点介绍 LSTM网络用来处理带“序列”(sequence)性质的数据。比如时间序列的数据,像每天的股价走势情况,机械振动信号的时域波形,以及类似于自然语言这种本身带有顺序性质的由有序单词组合的数据。

一、 LSTM网络原理


1.1 要点介绍

  • LSTM网络用来处理带“序列”(sequence)性质的数据。比如时间序列的数据,像每天的股价走势情况,机械振动信号的时域波形,以及类似于自然语言这种本身带有顺序性质的由有序单词组合的数据。 
  • LSTM本身不是一个独立存在的网络结构,只是整个神经网络的一部分,即由LSTM结构取代原始网络中的隐层单元部分。 
  • LSTM网络具有“记忆性”。其原因在于不同“时间点”之间的网络存在连接,而不是单个时间点处的网络存在前馈或者反馈。如下图2中的LSTM单元(隐层单元)所示。图3是不同时刻情况下的网络展开图。图中虚线连接代表时刻,“本身的网络”结构连接用实线表示。 

a0284214d814d64ddf6a20c48ab873d043c439f3

1.2 LSTM单元结构图 

图4,5是现在比较常用的LSTM单元结构示意图: 

039281d69ad4595eb104fc0a14a8a6947941fd88

其主要结构成分包含如下: 

  • 输入节点input node:接受上一时刻隐层单元的输出及当前时刻是样本输入; 
  • 输入门input gate:可以看到输入门会和输入节点的值相乘,组成LSTM中internal state单元值的一部分,当门的输出为1时,输入节点的激活值全部流向internal state,当门的输出为0时,输入节点的值对internal state没有影响。 
  • 内部状态internal state。 
  • 遗忘门forget gate:用于刷新internal state的状态,控制internal state的上一状态对当前状态的影响。 

各节点及门与隐藏单元输出的关系参见图4,图5所示。

二、代码示例

后台回复关键词“音乐”,下载完整代码及数据集

运行环境:windows下的spyder 
语言:python 2.7,以及Keras深度学习库。

由于看这个赛题前,没有一点Python基础,所以也是边想思路边学Python,对Python中的数据结构不怎么了解,所以代码写得有点烂。但整个代码是可以运行无误的。这也是初赛时代码的最终版本。

2.1 示例介绍 

主要以今年参加的“2016年阿里流行音乐趋势预测”为例。 

时间过得很快,今天已是第二赛季的最后一天了,我从5.18开始接触赛题,到6.14上午10点第一赛季截止,这一期间,由于是线下赛,可以用到各种模型,而自已又是做深度学习(deep learning)方向的研究,所以选择了基于LSTM的循环神经网络模型,结果也很幸运,进入到了第二赛季。开始接触深度学习也有大半年了,能够将自已所学用到这次真正的实际生活应用中,结果也还可以,自已感觉很欣慰。突然意识到,自已学习生涯这么多年,我想“学有所成,学有所用”该是我今后努力的方向和动力了吧。 

下面我简单的介绍一下赛题: 

官方给的“输入”,共两张表:

  • 一张是用户行为表(时间跨度20150301-20150830)mars_tianchi_user_actions,主要描述用户对歌曲的收藏,下载,播放等行为;
  • 一张是歌曲信息表mars_tianchi_songs,主要用来描述歌曲所属的艺人,及歌曲的相关信息,如发行时间,初始热度,语言等。 

637c25a050ad89376e953633b11b175c889792d2

样例: 

7dc6a39717ffa8da05ce55d5bc24a42f9127f804
样例: 

5b5e0af9a2687f6dd4015b00a59d38c316d63d2f

官方要求“输出”:预测随后2个月(20150901-20151030)每个歌手每天的播放量。输出格式: 

75f87ff0c44dcf9f5ada8f2294bef0492ae9d772
2.2 初赛所用模型思路 


由于是对歌手的播放量进行预测,所以直接对每个歌手的“播放量”这一对象进行统计,查看在20150301-20151030这8个月内歌手的播放量变化趋势,并以每天的播放量,连续3天的播放均值,连续3天的播放方差,作为一个时间点的样本,“滑动”构建神经网络的训练集。网络的构成如下: 

  • 输入层:3个神经元,分别代表播放量,播放均值,播放方差; 
  • 第一隐层:LSTM结构单元,带有35个LSTM单元; 
  • 第二隐层:LSTM结构单元,带有10个LSTM单元; 
  • 输出层:3个神经元,代表和输入层相同的含义。 

目标函数:重构误差。 

下图是某些歌手的播放统计曲线: 

5b74fd9e3246ea156028f63b765718434058284e

2.2 预测结果 


蓝色代表歌手真实的播放曲线,绿色代表预测曲线: 

d30cbd6274ef7ad0fa15573c1e8b9a9c22558a0a

原文发布时间为:2017-12-11

本文来自云栖社区合作伙伴“大数据文摘”,了解相关信息可以关注“x”微信公众号

相关文章
|
5天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的自适应神经网络:原理与应用
【8月更文挑战第14天】在深度学习领域,自适应神经网络作为一种新兴技术,正逐渐改变我们处理数据和解决问题的方式。这种网络通过动态调整其结构和参数来适应输入数据的分布和特征,从而在无需人工干预的情况下实现最优性能。本文将深入探讨自适应神经网络的工作原理、关键技术及其在多个领域的实际应用,旨在为读者提供一个全面的视角,理解这一技术如何推动深度学习向更高效、更智能的方向发展。
|
3天前
|
机器学习/深度学习 自然语言处理 数据安全/隐私保护
深度学习中的艺术与科学:探索神经网络的奥秘
本文将带您走进深度学习的奇妙世界,一探神经网络背后的科学原理和艺术创造。我们将从基础概念出发,逐步深入到模型训练的技巧,以及如何应对过拟合等常见问题。通过实例分析,我们将展示深度学习技术在图像识别和自然语言处理等领域的应用,并讨论其在未来科技发展中的潜在影响。让我们一同解锁深度学习的力量,发现它如何塑造我们的数字世界。
|
4天前
|
机器学习/深度学习 传感器 自然语言处理
深度学习的魔法:如何用神经网络解锁数据的秘密
在这个数字信息爆炸的时代,深度学习技术如同一把钥匙,揭开了数据隐藏的层层秘密。本文将深入浅出地探讨深度学习的核心概念、关键技术和实际应用,带领读者领略这一领域的奥秘与魅力。通过生动的比喻和直观的解释,我们将一起走进神经网络的世界,看看这些由数据驱动的“大脑”是如何学习和成长的。无论你是科技爱好者还是行业新手,这篇文章都将为你打开一扇通往未来的大门。
|
1天前
|
机器学习/深度学习 人工智能 PyTorch
【深度学习】使用PyTorch构建神经网络:深度学习实战指南
PyTorch是一个开源的Python机器学习库,特别专注于深度学习领域。它由Facebook的AI研究团队开发并维护,因其灵活的架构、动态计算图以及在科研和工业界的广泛支持而受到青睐。PyTorch提供了强大的GPU加速能力,使得在处理大规模数据集和复杂模型时效率极高。
111 58
|
4天前
|
机器学习/深度学习 算法 自动驾驶
深度学习的奥秘:探索神经网络的黑盒子
深度学习技术如同一扇打开未知世界的大门,其背后的复杂算法和庞大数据让许多人感到好奇又困惑。本文以通俗易懂的语言,逐步揭开深度学习的神秘面纱,从基础概念到实际应用,引导读者理解并欣赏这一技术的奇妙之处。
13 1
|
4天前
|
机器学习/深度学习 算法
深度学习中的艺术与科学:探索神经网络的奥秘
本文以浅显易懂的方式介绍了深度学习的基本概念,并逐步深入到其背后的复杂数学原理。通过生动的比喻和直观的解释,文章揭示了深度学习如何模仿人脑处理信息,并探讨了它在图像识别、语音处理等领域的应用。同时,文章还讨论了深度学习面临的挑战和未来的发展方向,旨在激发读者对这一前沿技术的兴趣和思考。
|
7天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习的魔法:如何用神经网络改变未来
在这篇文章中,我们将探索深度学习如何像魔法一样,通过神经网络改变我们的未来。我们将从基础概念出发,逐步深入到深度学习的应用和挑战,最后展望其对未来的影响。让我们一起揭开深度学习的神秘面纱,看看这个强大的工具如何塑造我们的世界。
|
5天前
|
机器学习/深度学习 PyTorch TensorFlow
【PyTorch】PyTorch深度学习框架实战(一):实现你的第一个DNN网络
【PyTorch】PyTorch深度学习框架实战(一):实现你的第一个DNN网络
26 1
|
11天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习的浪潮之下:探索神经网络的未来
本文将深入探讨深度学习技术背后的科学原理,分析其在多个领域的应用实例,并展望未来发展趋势。我们将从基础理论出发,逐步过渡到高级应用,最后提出行业面临的挑战和潜在的解决策略,旨在为读者提供一个全面而深入的视角。
29 6
|
8天前
|
机器学习/深度学习 人工智能 算法
深度学习的奥秘:探索神经网络的核心原理
深度学习,一个听起来既神秘又充满魔力的词汇,它如同一扇通往未知世界的大门,背后隐藏着无尽的智慧与可能。本文将以一种通俗易懂的方式,带领读者走进深度学习的世界,探索那些构成神经网络核心的基本原理。我们将从最初的感知机模型出发,逐步深入到复杂的多层网络结构,揭示数据如何在这些网络中流动、变化,最终实现智能决策的过程。通过这篇文章,你将了解到深度学习不仅仅是技术的堆砌,更是对自然界智慧的一种模仿与致敬。
18 1

热门文章

最新文章