标签
PostgreSQL , join , 表达式索引 , 虚拟列索引 , 静态数据 , immutable函数
背景
CASE: 使用虚拟索引,响应时间从2.3秒下降到0.3毫秒
业务系统在设计时,为了减少数据冗余,提升可读性,通常需要将不同的数据放到不同的表。
在查询时,通过多表JOIN来补齐需要查询或在过滤的内容。
比如这样的例子:
有两张表,分别有1千万和100万数据,当用户查询时,需要补齐那100万表中的某个字段进行过滤。
create table a (id int, bid int, c1 int, c2 int, c3 int);
CREATE TABLE b (id int primary key, path text);
insert into a select id, random()*1000000 , random()*10000000, random()*10000000 , random()*10000000 from generate_series(1,10000000) t(id);
insert into b select id, md5(random()::text) from generate_series(1,1000000) t(id);
create index idx_b_1 on b(path text_pattern_ops);
-- 查询
select a.* from a left join b on (a.bid=b.id and b.path like 'abc%');
那么它的性能如何呢?
postgres=# explain select a.* from a left join b on (a.bid=b.id) where b.path like 'abcde%';
QUERY PLAN
------------------------------------------------------------------------------------
Hash Join (cost=9.70..289954.61 rows=1000 width=20)
Hash Cond: (a.bid = b.id)
-> Seq Scan on a (cost=0.00..163695.00 rows=10000000 width=20)
-> Hash (cost=8.45..8.45 rows=100 width=4)
-> Index Scan using idx_b_1 on b (cost=0.42..8.45 rows=100 width=4)
Index Cond: ((path ~>=~ 'abcde'::text) AND (path ~<~ 'abcdf'::text))
Filter: (path ~~ 'abcde%'::text)
(7 rows)
Time: 0.777 ms
postgres=# select a.* from a left join b on (a.bid=b.id) where b.path like 'abcde%';
id | bid | c1 | c2 | c3
---------+--------+---------+---------+---------
2423577 | 633740 | 846719 | 1720744 | 416608
2433286 | 633740 | 9797626 | 6737349 | 5669893
3851817 | 633740 | 8764393 | 3779499 | 2830950
4889541 | 633740 | 3892055 | 9470525 | 611262
5004634 | 633740 | 5420943 | 2448245 | 5719976
5372019 | 633740 | 5402891 | 3441462 | 8194368
6051251 | 633740 | 8691218 | 7184625 | 5940346
6344344 | 633740 | 5869018 | 9352883 | 636112
9751456 | 633740 | 3797867 | 1934900 | 2511398
(9 rows)
Time: 2348.506 ms (00:02.349)
条件越多,性能会越差。
这样的查询,并发一高,性能影响会比较大。
当b表是静态的时(没有DML),可以用虚拟列索引来实现优化。
表达式索引 - 虚拟列索引
假设B表不会发生DML,是一个静态表。
1、创建一个获取path的函数
create or replace function get_path(int) returns text as $$
select path from b where id=$1;
$$ language sql strict immutable;
这个函数用于从B表获取path,假设B表静态(不会有增删改),那么这个函数就是immutable的,无论什么时候输入一个ID,返回的都是同一个path。
2、在a表直接创建表达式索引(虚拟列索引)
create index idx_a_1 on a(get_path(bid) text_pattern_ops);
3、修改SQL语句如下
select * from a where get_path(bid) like 'abc%';
4、响应时间从2.3秒下降到0.3毫秒。
postgres=# select * from a where get_path(bid) like 'abcde%';
id | bid | c1 | c2 | c3
---------+--------+---------+---------+---------
2423577 | 633740 | 846719 | 1720744 | 416608
2433286 | 633740 | 9797626 | 6737349 | 5669893
3851817 | 633740 | 8764393 | 3779499 | 2830950
4889541 | 633740 | 3892055 | 9470525 | 611262
5004634 | 633740 | 5420943 | 2448245 | 5719976
5372019 | 633740 | 5402891 | 3441462 | 8194368
6051251 | 633740 | 8691218 | 7184625 | 5940346
6344344 | 633740 | 5869018 | 9352883 | 636112
9751456 | 633740 | 3797867 | 1934900 | 2511398
(9 rows)
postgres=# select * from b where path like 'abcde%';
id | path
--------+----------------------------------
633740 | abcde980c8568a9a6a140885d92fcebe
(1 row)
postgres=# explain (analyze,verbose,timing,costs,buffers) select * from a where get_path(bid) like 'abcde%';
QUERY PLAN
----------------------------------------------------------------------------------------------------------------------------
Index Scan using idx_a_1 on public.a (cost=0.56..158697.56 rows=50000 width=20) (actual time=0.151..0.276 rows=9 loops=1)
Output: id, bid, c1, c2, c3
Index Cond: ((get_path(a.bid) ~>=~ 'abcde'::text) AND (get_path(a.bid) ~<~ 'abcdf'::text))
Filter: (get_path(a.bid) ~~ 'abcde%'::text)
Buffers: shared hit=50
Planning time: 0.092 ms
Execution time: 0.300 ms
(7 rows)
即使没有虚拟索引,也可以PostgreSQL的使用并行计算
32个并行,耗时454毫秒,依旧不如使用虚拟列索引的效果。
postgres=# set parallel_tuple_cost =0;
SET
postgres=# set parallel_setup_cost =0;
SET
postgres=# set max_parallel_workers_per_gather =32;
SET
postgres=# alter table a set (parallel_workers =32);
ALTER TABLE
postgres=# explain select a.* from a left join b on (a.bid=b.id) where b.path like 'abcde%';
QUERY PLAN
--------------------------------------------------------------------------------
Gather (cost=20835.25..91600.56 rows=1000 width=20)
Workers Planned: 32
-> Hash Join (cost=20835.25..91600.56 rows=31 width=20)
Hash Cond: (a.bid = b.id)
-> Parallel Seq Scan on a (cost=0.00..66820.00 rows=312500 width=20)
-> Hash (cost=20834.00..20834.00 rows=100 width=4)
-> Seq Scan on b (cost=0.00..20834.00 rows=100 width=4)
Filter: (path ~~ 'abcde%'::text)
(8 rows)
Time: 0.685 ms
postgres=# select a.* from a left join b on (a.bid=b.id) where b.path like 'abcde%';
id | bid | c1 | c2 | c3
---------+--------+---------+---------+---------
5004634 | 633740 | 5420943 | 2448245 | 5719976
9751456 | 633740 | 3797867 | 1934900 | 2511398
3851817 | 633740 | 8764393 | 3779499 | 2830950
4889541 | 633740 | 3892055 | 9470525 | 611262
6344344 | 633740 | 5869018 | 9352883 | 636112
2433286 | 633740 | 9797626 | 6737349 | 5669893
2423577 | 633740 | 846719 | 1720744 | 416608
6051251 | 633740 | 8691218 | 7184625 | 5940346
5372019 | 633740 | 5402891 | 3441462 | 8194368
(9 rows)
Time: 454.405 ms