大数据时代:基于微软案例数据库数据挖掘知识点总结(Microsoft 线性回归分析算法)

本文涉及的产品
云数据库 RDS SQL Server,基础系列 2核4GB
RDS SQL Server Serverless,2-4RCU 50GB 3个月
推荐场景:
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: 原文:(原创)大数据时代:基于微软案例数据库数据挖掘知识点总结(Microsoft 线性回归分析算法)前言 此篇为微软系列挖掘算法的最后一篇了,完整该篇之后,微软在商业智能这块提供的一系列挖掘算法我们就算总结完成了,在此系列中涵盖了微软在商业智能(BI)模块系统所能提供的所有挖掘算法,当然此框架完全可以自己扩充,可以自定义挖掘算法,不过目前此系列中还不涉及,只涉及微软提供的算法,当然这些算法已经基本涵盖大部分的商业数据挖掘的应用场景,也就是说熟练了这些算法大部分的应用场景都能游刃有余的解决,每篇算法总结包含:算法原理、算法特点、应用场景以及具体的操作详细步骤。
原文: (原创)大数据时代:基于微软案例数据库数据挖掘知识点总结(Microsoft 线性回归分析算法)

前言

此篇为微软系列挖掘算法的最后一篇了,完整该篇之后,微软在商业智能这块提供的一系列挖掘算法我们就算总结完成了,在此系列中涵盖了微软在商业智能(BI)模块系统所能提供的所有挖掘算法,当然此框架完全可以自己扩充,可以自定义挖掘算法,不过目前此系列中还不涉及,只涉及微软提供的算法,当然这些算法已经基本涵盖大部分的商业数据挖掘的应用场景,也就是说熟练了这些算法大部分的应用场景都能游刃有余的解决,每篇算法总结包含:算法原理、算法特点、应用场景以及具体的操作详细步骤。为了方便阅读,我还特定整理一篇目录:大数据时代:深入浅出微软数据挖掘算法总结连载,有兴趣的可以点击参阅。

本篇介绍的为Microsoft线性回归分析算法,此算法其实原理和Microsoft神经网络分析算法一样,只是侧重点不一样,Microsoft神经网络算法是基于某种目的,利用现有数据进行“诱探”分析,侧重点是分析,而Microsoft线性回归分析算法侧重的是“预测”,也就是基于神经网络分析出来的规则,进行结果的预测。

应用场景介绍

该算法的应用场景和上一篇的Microsoft神经网络分析算法一样,不清楚的可以点击查看,可以简单列举:

  • 营销和促销分析,如评估直接邮件促销或一个电台广告活动的成功情况。
  • 根据历史数据预测股票升降、汇率浮动或其他频繁变动的金融信息。

  • 分析制造和工业流程。

  • 文本挖掘。

  • 分析多个输入和相对较少的输出之间的复杂关系的任何预测模型。

其实该算法为Microsoft神经网络分析算法的补充算法,上一篇我们已经介绍了,当我们面对一堆的数据而要基于某种目的去数据挖掘时,感觉到无从下手或者在DM中选择不到合适的算法的时候,这时候我们会应用到Microsoft神经网络分析算法,当我们用Microsoft神经网络分析算法分析出规则的时候,我们就的利用Microsoft线性回归分析算法进行结果预测了。

技术准备

(1)微软案例数据仓库(AdventureWorksDW208R2),案例数据仓库中的呼叫中心的数据表,和上一篇的Microsoft神经网络分析算法用到的是同一张事实表FactCallCenter,详细可参阅上篇。

(2)VS2008、SQL Server、 Analysis Services。

挖掘目的

上一篇我们已经利用Microsoft神经网络分析算法对微软案例数据库中的呼叫中心数据进行了简要的分析,通过分析其实我们知道了影响“挂断率”这个指标的因素最主要的是两个:第一个是应答平均时间(AverageTimePerIssue),第二个就是上班阶段(Shift),并且推断深夜上班挂断率低等规则吧,本篇我们将利用这些规则来做挖掘。

两个目标:

1、根据规则发掘出平均应答时间调整到多少最好,或者基于目标,比如要求挂断率控制在0.05以内,应答时间应该控制在多少合适。

2、如何安排岗位时间及岗位人数最佳,比如:安排几班岗位,每个岗位安排多少人,然后什么时间上班最好。

操作步骤

(1)我们这里还是利用上一期的解决方案,直接打开,看图:

 

我们来新添加Microsoft路逻辑回归算法,在挖掘模型面板中,右键添加新的算法,不明白的可以参考我前几篇文章

 

我们来设置输入和预测属性值,默认的和前面的Microsoft神经网络属性值一样,因为我们要预测“挂断率”和岗位人数,我们这里选择ServiceGrade和Level Two Operators设置为“预测”,这里VS会为这两个元数据容器创建两个单独的模型。也就是说这个算法回味每一组可预测属性创建一个单独的子树。

其它列我们都更改为“输入”。

我们来部署该挖掘模型,然后运行,下一步我们就是要浏览数据。

(2)部署程序,创建挖掘

在部署完程序后,然后点击运行按钮,这里我们可以看到“挖掘模型查看器”,该算法的浏览器展示的内容和Microsoft神经网络算法是一样的,这里就不废话介绍了,不懂的可以参考我上篇文章。

所以说该算法和Microsoft神经网络算法是一样的,这里面如果真的去对比的话,其实Microsoft逻辑回归算法是基于目的进行设计的,就是说它比起神经网络算法的话,它是带着目标去进行逻辑传递的,这一点有点像Microsoft决策树算法和贝叶斯算法的关系一样。

不废话,我们接着进行我们的挖掘

我们直接进入“挖掘模型规则”

我们这里选择好“挖掘模型”,然后在挖掘模型中选择“单独查询”

这里我们选择上一篇神经网络发现的规则,换班时间(Shift)选择:夜晚(midnight),嘿嘿...然后第二班的人数我们输入个人数,我们假定有6个人

我们在“源”里选择“预测函数”,“字段”选择PredictHistogram,然后将 ServiceGrade拖入“条件/参数”

点击运行,就可以看到这种规则下的,预测的“挂断率”是多少了,6个人上夜班

嘿嘿...结果出来了..0.102566737...结果还可以嘛...表示100人打进电话才有10个人挂断。后面的值是一些数据支撑,比如事例数,可能性等

这种预测是比较单一,我们不能一个个的人数去试验,其实基于这种模型我们还可以进行更深度的挖掘,比如当前我们的呼叫中心人数、上班的次序已经是固定的,我们可以根据这个现有数据进行预测,预测出下一步将如何调整:

我们这样干:

首先我们根据现有表中的数据建立一个可用于预测的数据行,我们按照上班轮次,是否节假日进行分组,取出每个轮次的平均人数、平均电话数等...我们可以利用这个语句:

我们这里把最大值和最小值页进行筛选,以便于后续的挖掘。我们将这个语句改成VS中的数据源视图中的:命名查询

我们进去到挖掘面板中,选择该事例表

然后编辑好管理关系,将包含 Calls 列、Orders 列、Issues 列和 LvlTwoOperators 列映射到平均值。

我们设计一下预测函数

点击运行,我们可以看到预测的明细结果:

上面的分析结果可以看到,在holiday(节假日)的midnight(晚间)的挂断率是最高的:0.158,而在PM2(下午第二档)的weekday(工作日)日的挂断率是最低的:0.1144

 但是这些值或许还不是我们所期望的,比如老总发话了,要将挂断率保持在0.1以下,该如何调整呢,其实基于上一篇我们神经网络算法已经分析出来,平均应答率这个因素对于挂断率这个指标影响是非常大的,我们可以通过调整这个值来减小挂断率这个值的大小,提高服务水平,比如我们可以减少%90或者80%的平均应答时间,我们来预测以下这样产生的挂断率的值为多少。

我们调整上面的数据源视图的语句,增加两项:

 然后将这个语句调整值数据源视图中,利用上述方法来预测下减少到90%的平均应答时间,它的挂断率是多少,我们直接写DMX语句进行查询:

SELECT
  t.[Shift],
  t.[WageType],
  Predict([FactCallCenterReturn].[Service Grade]),
  PredictProbability([FactCallCenterReturn].[Service Grade])
From
  [FactCallCenterReturn]
PREDICTION JOIN
  OPENQUERY([Adventure Works DW2008R2],
    'SELECT
      [Shift],
      [WageType],
      [AvgCalls],
      [AvgIssues],
      [AvgOperators],
      [AvgOrders],
      [Last90TimePerIssue]
    FROM
      (SELECT DISTINCT WageType, Shift, 
AVG(Orders) as AvgOrders, MIN(Orders) as MinOrders, MAX(Orders) as MaxOrders,
AVG(Calls) as AvgCalls, MIN(Calls) as MinCalls, MAX(Calls) as MaxCalls,
AVG(LevelTwoOperators) as AvgOperators, MIN(LevelTwoOperators) as MinOperators, MAX(LevelTwoOperators) as MaxOperators,
AVG(IssuesRaised) as AvgIssues, MIN(IssuesRaised) as MinIssues, MAX(IssuesRaised) as MaxIssues,
AVG(AverageTimePerIssue) as AvgTimePerIssue,(AVG(AverageTimePerIssue)*0.9) as Last90TimePerIssue,
(AVG(AverageTimePerIssue)*0.8) as Last80TimePerIssue
FROM dbo.FactCallCenter
GROUP BY Shift, WageType) as [Shifts for Call Center]
    ') AS t
ON
  [FactCallCenterReturn].[Wage Type] = t.[WageType] AND
  [FactCallCenterReturn].[Shift] = t.[Shift] AND
  [FactCallCenterReturn].[Calls] = t.[AvgCalls] AND
  [FactCallCenterReturn].[Issues Raised] = t.[AvgIssues] AND
  [FactCallCenterReturn].[Level One Operators] = t.[AvgOperators] AND
  [FactCallCenterReturn].[Orders] = t.[AvgOrders] AND
  [FactCallCenterReturn].[Average Time Per Issue] = t.[Last90TimePerIssue]

来看一下结果:

挂断率相比平均值有所减小,但是还没有满足BOSS的要求,在0.1以下,我们继续减小平均应答率看看,减少到80%

我们再来看一下预测结果:

嘿嘿,已经出现0.1以下的应答率了,看样子按照这个规则进行调整,基本是能满足BOSS的要求了,将平均应答率减少至80%。

有兴趣的童鞋,可以按照此规律进行分析挖掘,来正确的调整每个岗位的人数以及上班轮次的调整等。

结语

本篇文章到此结束了...本篇和上一篇的Microsoft神经网络分析算法是相关联的,不清楚的可以参照,其实关于Microsoft神经网络算法和Microsft逻辑回归的应用场景非常的广泛,熟悉好这两种算法很关键。

本篇作为该系列的最后一篇,其实关于数据挖掘这块在微软这边能做到的基本都涵盖到了,虽然当前SQL Server版本已经到了2012..2014版本貌似也问世了,但是这一系列的版本中,关于商业智能BI这块它其实是没有实质性的提高的,其关键技术还是于SQL Server2005上出现的,所有本系列算法总结基于SQL Server2008版本,所应用到的范围是基本能涵盖全的。

其实写一系列的算法分析的文章还是挺累的,每篇文章都会用尽心血的去组织好语言,力求达到深入浅出的知识点总结,当然个人能力有限,不当之处还望各位阅读者不吝赐教。

文章的最后我们给出前几篇算法的文章连接:

Microsoft决策树分析算法总结

Microsoft聚类分析算法总结

Microsoft Naive Bayes 分析算法

Microsoft算法结果预测篇

Microsoft时序算法总结

Microsoft 时序算法——结果预算+下期彩票预测篇

Microsoft 关联规则分析算法

Microsoft 顺序分析和聚类分析算法

Microsoft 神经网络分析算法原理篇

Microsoft 神经网络分析算法总结

为了方便阅读,我还特地整理了以下一篇目录篇

大数据时代:深入浅出微软数据挖掘算法总结连载

 

如果您看了本篇博客,觉得对您有所收获,请不要吝啬您的“推荐”。 

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
3月前
|
机器学习/深度学习 自然语言处理 算法
【数据挖掘】金山办公2020校招大数据和机器学习算法笔试题
金山办公2020校招大数据和机器学习算法笔试题的解析,涵盖了编程、数据结构、正则表达式、机器学习等多个领域的题目和答案。
99 10
|
3月前
|
数据采集 存储 NoSQL
建筑业数据挖掘:Scala爬虫在大数据分析中的作用
建筑业数据挖掘:Scala爬虫在大数据分析中的作用
|
3月前
|
自然语言处理 算法 数据挖掘
【数据挖掘】十大算法之PageRank连接分析算法
文章介绍了PageRank算法的基本概念和数学模型,包括如何通过一阶马尔科夫链定义随机游走模型以及如何计算网页的重要性评分,并提供了PageRank迭代算法的具体步骤。
71 0
|
30天前
|
搜索推荐 数据挖掘 UED
分享一些利用商品详情数据挖掘潜在需求的成功案例
本文介绍了四个成功利用商品详情数据挖掘潜在需求的案例:亚马逊通过个性化推荐系统提升销售额;小米通过精准挖掘用户需求优化智能硬件生态链;星巴克推出定制化饮品服务满足用户多样化口味;美妆品牌利用数据改进产品配方和设计,制定针对性营销策略。这些案例展示了数据挖掘在提升用户体验和商业价值方面的巨大潜力。
|
3月前
|
自然语言处理 数据可视化 安全
【第十届“泰迪杯”数据挖掘挑战赛】C题:疫情背景下的周边游需求图谱分析 问题一方案及Python实现
第十届“泰迪杯”数据挖掘挑战赛C题的解决方案,涉及疫情背景下周边游需求图谱分析,包括微信公众号文章分类、周边游产品热度分析、本地旅游图谱构建与分析,以及疫情前后旅游产品需求变化分析的Python实现方法。
119 1
【第十届“泰迪杯”数据挖掘挑战赛】C题:疫情背景下的周边游需求图谱分析 问题一方案及Python实现
|
3月前
|
数据采集 自然语言处理 数据可视化
基于Python的社交媒体评论数据挖掘,使用LDA主题分析、文本聚类算法、情感分析实现
本文介绍了基于Python的社交媒体评论数据挖掘方法,使用LDA主题分析、文本聚类算法和情感分析技术,对数据进行深入分析和可视化,以揭示文本数据中的潜在主题、模式和情感倾向。
159 0
|
3月前
|
数据挖掘 调度 Python
【第十届“泰迪杯”数据挖掘挑战赛】B题:电力系统负荷预测分析 Baseline
第十届“泰迪杯”数据挖掘挑战赛B题的基线解决方案,涉及电力系统负荷预测分析,包括数据读取、特征处理、模型训练和评估,以及使用了LightGBM进行回归预测。
112 3
|
3月前
|
机器学习/深度学习 安全 算法
【2023年第十一届泰迪杯数据挖掘挑战赛】A题:新冠疫情防控数据的分析 32页和40页论文及实现代码
本文总结了2023年第十一届泰迪杯数据挖掘挑战赛A题的新冠疫情防控数据分析,提供了32页和40页的论文以及实现代码,涉及密接者追踪、疫苗接种影响分析、重点场所管控以及疫情趋势研判等多个方面,运用了机器学习算法和SEIR传染病模型等方法。
62 0
【2023年第十一届泰迪杯数据挖掘挑战赛】A题:新冠疫情防控数据的分析 32页和40页论文及实现代码
|
3月前
|
机器学习/深度学习 安全 算法
【2023年第十一届泰迪杯数据挖掘挑战赛】A题:新冠疫情防控数据的分析 建模方案及python代码详解
本文介绍了2023年第十一届泰迪杯数据挖掘挑战赛A题的解题思路和Python代码实现,涵盖了新冠疫情防控数据的分析、建模方案以及数据治理的具体工作。
74 0
【2023年第十一届泰迪杯数据挖掘挑战赛】A题:新冠疫情防控数据的分析 建模方案及python代码详解
|
3月前
|
分布式计算 并行计算 大数据
【数据挖掘】百度2015大数据云计算研发笔试卷
百度2015年大数据云计算研发笔试卷的题目总结,涵盖了Hadoop、Spark、MPI计算框架特点、TCP连接建立过程、数组最大和问题、二分查找实现以及灯泡开关问题,提供了部分题目的解析和伪代码。
54 1