Java.nio vs Java.io

简介: Java.nio vs Java.ioBy Nino Guarnacci on Jun 18, 2009……… posted by Davide PisanoThis document is not a Java.




Java.nio vs Java.io

……… posted by Davide Pisano

This document is not a Java.io or a Java.nio manual, or a technical document about Java.io and Java.nio use. It only attempts to compare these two packages, highlighting differences and features in the most simple way. Java.nio presents new stream communication aspects and inserts new buffer, file streaming and socket features.

java.io overview

This package is used for system input and output through data streams, and serialization. Streams support many different kinds of data, including simple bytes, primitive data types, localized characters, and objects. A stream is a sequence of data: a program uses an input stream to read data from a source.ds-prog

 

 

A program uses an output stream to write and send data to a destination:prog-ds 

Programs use byte streams to perform byte input and output. All byte stream classes extendsInputStream and OutputStream.

About InputStream and OutputStream

Performing InputStream operations or OutputStream operations means generally having a loop that reads the input stream and writes the output stream one byte at a time. You can usebuffered I/O streams for an overhead reduction (overhead generated by each such request often triggers disk access, network activity, or some other operation that is relatively expensive). Buffered input streams read data from a memory area known as a buffer; the native input API is called only when the buffer is empty. Similarly, buffered output streams write data to a buffer, and the native output API is called only when the buffer is full. Those buffered API wrap the unbuffered streams: BufferedInputStream and BufferedOutputStream.

File I/O

The above section focuses on streams, which provide a simple model for reading and writing data. Streams work with a large variety of data sources and destinations, including disk files. However, streams don't support all the operations that are common with disk files.The following links give information on non-stream file I/O. There are two topics:

  • File is a class that helps to write platform independent code for examining and manipulating files and directories.

  • Random access files support non sequential access to disk file data.

java.net socket

A socket is one endpoint of a two-way communication link between two programs running on the network. Socket classes are used to represent the connection between a client program and a server program. The java.net package provides two classes: Socket and ServerSocket. These implement the client side of the connection and the server side of the connection, respectively.

The client knows the host-name of the machine on which the server is running ,and the port number on which the server is listening. Clients try to connect to the server and if everything goes well, the server accepts the connection. Upon acceptance, the server gets a new socket bound to the same local port and also has its remote endpoint set to the address and port of the client. It needs a new socket so that it can continue to listen to the original socket for connection requests while tending to the needs of the connected client.

The server waits for a client connection in blocking mode: serverSocket.accept() is a blocking instruction, the server waits for a connection and no other operation can be executed by the thread which runs the server. Because of this, the server can work in multitasking only by implementing a multi-thread server: having to create a thread for every new socket created by the server.

NIO API

The I/O performance, often, is a modern application critical aspect. Operative Systems (OS) continuously improve the I/O performance. JVM provides a uniform operating environment that helps the Java programmer in most of the differences between operating-system environments. This makes it faster and easier to write, but the OS feature becomes hidden. To increase IO performance you could write a specific code to access the OS feature directly, but this isn’t the best solution - your code could be OS dependent. Java.nio provides new equipment to address this problem. It provides high-performance I/O features to perform operations on commonly available commercial operating systems today.

The NIO packages of JDK 1.4 introduce a new set of abstractions for doing I/O.

java.nio overview

Java.nio is the new package that implements the New I/O APIs for the Java Platform. The NIO APIs include the following features:

  • Buffers for data of primitive types

  • Character-set encoders and decoders

  • A pattern-matching facility based on Perl-style regular expressions

  • Channels, a new primitive I/O abstraction

  • A file interface that supports locks and memory mapping

  • A multiplexed, non-blocking I/O facility for writing scalable servers

At the sun site is it possible to find exhaustive technical documentation about java.nio. Now I’ll explain some of nio's aspects to show the difference betwen the old library java.io. and java.nio. Be advised, java.nio is not a java.io substitute, rather it is a java.io ‘expansion’. Nio's birth has caused a revision of Io's class and interface (look at this link).

One of the most important aspects of NIO is the ability to operate in non-blocking mode, denied to the traditional java I/O library. But what is non-blocking mode?

Non blocking mode

The bytes of an I/O stream must be accessed sequentially. Devices, printer ports, and network connections are common examples of streams.

Streams are generally, but not necessarily, slower than block devices, and are often the source of intermittent input. Most operating systems allow streams to be placed into non-blocking mode, which permits a process to check if input is available on the stream, without getting stuck if none is available at a given moment. Such a capability allows a process to handle input as it arrives but perform other functions while the input stream is idle. The operating system can be told to watch a collection of streams and indicate which of those streams are ready. This ability permits a process to multiplex many active streams using common code and a single thread by leveraging the readiness information returned by the operating system. This is widely used in network servers to handle large numbers of network connections.

Buffers

Starting from the simplest and building up to the most complex, the first improvement to mention is the set of Buffer classes found in the java.nio package. These buffers provide a mechanism to store a set of primitive data elements in an in-memory container. A Bufferobject is a container for a fixed amount of data, a container where data can be read and written.

All buffers are readable, but not all are writable. Each buffer class implements isReadOnly() to indicate whether it will allow the buffer content to be modified.

Channels

Buffers work with channels. Channels are portals through which I/O transfers take place, and buffers are the sources or targets of those data transfers. Data you want to send is placed in a buffer, which is passed to a channel; otherwise, a channel deposits data in a buffer you provide.

A Channel is like a tube that transports data efficiently between byte buffers and the entity on the other end of the channel. Channels are gateways through which the native I/O services of the operating system can be accessed with a minimum of overhead, and buffers are the internal endpoints used by channels to send and receive data.

Channels can operate in blocking or non-blocking modes. A channel in non-blocking mode never puts the invoking thread to sleep. The requested operation either completes immediately or returns a result indicating that nothing was done. Only stream-orientated channels, such as sockets can be placed in nonblocking mode. In the java.nio channel family there are FileChannelServerSocketChannel and SocketChannel; these are specific channels created for file and socket management.

FileChannel

FileChannels are read/write channels, they are always blocking and cannot be placed into nonblocking mode. The nonblocking paradigm of stream-oriented I/O doesn't make as much sense for file-oriented operations because of the fundamentally different nature of file I/O.

FileChannel objects cannot be created directly. A FileChannel instance can be obtained only by calling getChannel() on an open file object (RandomAccessFileFileInputStream, or FileOutputStream). GetChannel() method returns a FileChannel object connected to the same file, with the same access permissions as the file object. FileChannel objects are thread-safe. Multiple threads can concurrently call methods on the same instance without causing any problems, but not all operations are multi-thread. Operations that affect the channel's position or the file size are single-threaded.

Using FileChannel, operations like file copy become a channel to channel trasfer (transferTo()and transferFrom())and read/write operations become easy using buffers.

SocketChannel

SocketChannel is different to FileChannel: The new socket channels can operate in nonblocking mode and are selectable. It's no longer necessary to dedicate a thread to each socket connection, Using the new NIO classes, one or a few threads can manage hundreds or even thousands of active socket connections with little or no performance loss. It's possible to perform readiness selection of socket channels using a Selector object.

There are three socket channel type: SocketChannelServerSocketChannel, andDatagramChannel; SocketChannel and DatagramChannel are able to read and write, ServerSocketChannel listens for incoming connects and creates new SocketChannel objects. All the socket channels create a peer socket object when they are instantiated (java.net sockets). The peer socket can be obtained from a channel by invoking its socket() method. While every socket channel (in java.nio.channels) has an associated java.net socket object, not all sockets have an associated channel. If you create a Socket object in the traditional way, by instantiating it directly, it will not have an associated SocketChannel, and itsgetChannel() method will always return null.

Socket channels can operate in nonblocking mode. The blocking nature of traditional Java sockets has traditionally been one of the most significant limitations to Java application scalability. Non-blocking I/O is the basis upon which many sophisticated, high-performance applications are built. Setting or resetting a channel's blocking mode is easy. Simply callconfigureBlocking().

Nonblocking sockets are usually thought of for server-side use because they make it easier to manage many sockets simultaneously.

Selector

Selectors provide the ability to have a channel readiness selection, which enables multiplexed I/O. To understand selector feature, I can explain selector advantage using the following example.

Imagine you are in a train station (non-selector), and there are three platforms (channels), and on each platform a train arrives (buffer). On each platform there is a controller for each arrived train (worker thread). That is non-selector.  Now imagine selector.  There are three platforms (channel), on each platform arrives a train (buffer), and each platform has an indicator (a bell for example) that says “Train arrived” (selection key). In this instance there is only one controller for all three platforms.  He looks at the indicator (selector.select()) to find out if a train has arrived and goes to meet that train.

It's simple to understand the advantages of using selector: with a single thread you can obtain a multitasking application. As well as this, you can obtain more advantages using non-blocking selector! Imagine that the train controller looks at the indicator: he can wait for a new train and not do any other thing (blocking mode using selector.select()). But he can instead control tickets, for example, while waiting for a new train (non-blocking mode usingselector.selectNow()).  In this way selector returns null and continue to execute code.

IO vs. NIO

NIO construction makes I/O faster than traditional I/O. In a program where the I/O operations constitute a significant amount of the processing, expect to see some difference. For example if an application has to copy files or transfer bytes using sockets, using Nio is possible to obtain a faster performance because it is closer to the OS than the I/O API. Increasing the byte size, the difference becomes  more appreciable. Nio also provides other features not in io API, for streaming operations. However, it is not possible to substitute IO with NIO because NIO API adds functionalities to the java.io. NIO extends the native IO API introducing new possibilities for the developer to manipulate stream data in a powerful way.

References

 

……… posted by Davide Pisano


Technorati Tag:  , ,

目录
相关文章
|
3月前
|
存储 缓存 安全
HashMap VS TreeMap:谁才是Java Map界的王者?
HashMap VS TreeMap:谁才是Java Map界的王者?
124 2
|
3月前
|
数据采集 缓存 Java
Python vs Java:爬虫任务中的效率比较
Python vs Java:爬虫任务中的效率比较
|
13天前
|
存储 缓存 Oracle
Java线程池,白话文vs八股文,原来是这么回事!
本文介绍了Java线程池的原理、实现方式及相关参数。首先,通过类比公司员工的方式解释了线程池的核心概念,如核心线程、最大线程数、任务队列和拒绝策略。接着,详细描述了线程池的任务处理流程,并提供了使用`ThreadPoolExecutor`和`Executors`创建线程池的代码示例,强调了`ThreadPoolExecutor`的灵活性和`Executors`的局限性。最后,总结了线程池的相关参数及不同类型的线程池实现,并附带常见面试题及其解答,帮助读者全面理解线程池的应用场景和优化方法。
29 4
|
2月前
|
Java
java 中 IO 流
Java中的IO流是用于处理输入输出操作的机制,主要包括字节流和字符流两大类。字节流以8位字节为单位处理数据,如FileInputStream和FileOutputStream;字符流以16位Unicode字符为单位,如FileReader和FileWriter。这些流提供了读写文件、网络传输等基本功能。
56 9
|
3月前
|
存储 缓存 Java
java基础:IO流 理论与代码示例(详解、idea设置统一utf-8编码问题)
这篇文章详细介绍了Java中的IO流,包括字符与字节的概念、编码格式、File类的使用、IO流的分类和原理,以及通过代码示例展示了各种流的应用,如节点流、处理流、缓存流、转换流、对象流和随机访问文件流。同时,还探讨了IDEA中设置项目编码格式的方法,以及如何处理序列化和反序列化问题。
95 1
java基础:IO流 理论与代码示例(详解、idea设置统一utf-8编码问题)
|
3月前
|
安全 Java 程序员
Java集合之战:ArrayList vs LinkedList,谁才是你的最佳选择?
本文介绍了 Java 中常用的两个集合类 ArrayList 和 LinkedList,分析了它们的底层实现、特点及适用场景。ArrayList 基于数组,适合频繁查询;LinkedList 基于链表,适合频繁增删。文章还讨论了如何实现线程安全,推荐使用 CopyOnWriteArrayList 来提升性能。希望帮助读者选择合适的数据结构,写出更高效的代码。
109 3
|
4月前
|
安全 Java API
【Java面试题汇总】Java基础篇——String+集合+泛型+IO+异常+反射(2023版)
String常量池、String、StringBuffer、Stringbuilder有什么区别、List与Set的区别、ArrayList和LinkedList的区别、HashMap底层原理、ConcurrentHashMap、HashMap和Hashtable的区别、泛型擦除、ABA问题、IO多路复用、BIO、NIO、O、异常处理机制、反射
|
3月前
|
Java 数据处理 开发者
揭秘Java IO流:字节流与字符流的神秘面纱!
揭秘Java IO流:字节流与字符流的神秘面纱!
49 1
|
3月前
|
自然语言处理 Java 数据处理
Java IO流全解析:字节流和字符流的区别与联系!
Java IO流全解析:字节流和字符流的区别与联系!
119 1
|
4月前
|
Java 大数据 API
Java 流(Stream)、文件(File)和IO的区别
Java中的流(Stream)、文件(File)和输入/输出(I/O)是处理数据的关键概念。`File`类用于基本文件操作,如创建、删除和检查文件;流则提供了数据读写的抽象机制,适用于文件、内存和网络等多种数据源;I/O涵盖更广泛的输入输出操作,包括文件I/O、网络通信等,并支持异常处理和缓冲等功能。实际开发中,这三者常结合使用,以实现高效的数据处理。例如,`File`用于管理文件路径,`Stream`用于读写数据,I/O则处理复杂的输入输出需求。
257 12