机器学习项目到底怎么做?以及部分资料分享

简介: 很久没有更新图形图像处理方面的博客了,最近在培训数据发掘方面的技术,就把学到的东西和大家分享下。1. 压箱底的资料还有一些平时收集 的压箱底的资料拿出来和大家分享下:IPOL —-经典计算机视觉算法的c实现http://www.

很久没有更新图形图像处理方面的博客了,最近在培训数据发掘方面的技术,就把学到的东西和大家分享下。


1. 压箱底的资料

还有一些平时收集 的压箱底的资料拿出来和大家分享下:

IPOL —-经典计算机视觉算法的c实现

http://www.ipol.im/?utm_source=doi

这里写图片描述

https://www.codecademy.com/ —-编程语言自学成才

我的python就是在这个网站自学的,基本上把python的基本数据结构,list,dist等等介绍了一遍,只要一周左右甚至更短的时间就可以基本掌握一门全新的语言
这里写图片描述

在线处理网站

https://www.processon.com/

这里写图片描述

如果没有visio这是最好的选择!

一些大牛的博客

刘未鹏
http://mindhacks.cn/
http://mindhacks.cn/2011/11/04/how-to-interview-a-person-for-two-years/
http://mindhacks.cn/2012/08/27/modern-cpp-practices/

写技术博客的选择

在csdn耕耘了8年有余,一直很喜欢这里,然而不知道为何身边的朋友高手就是github,stackoverflow

后面我也准备尝试一些其他的平台


2. Transwarp 机器学习培训

转型机器学习方向的过程是痛苦的。最近在上海花了一周时间参加transwarp的数据分析师培训,这是我时隔7年之后再次踏上魔都的土地。上次来这里还是7年前来看上海世博会,不同的是此处上海之行是由北京启程。我乘坐的是最早一班复兴号列车,由于很多外国人都在新奇 的拍照,这一路风驰电掣的路过祖国的大好河山,让我也怀揣着满满的民族自豪感惊异于祖国 的发展速度。2010年那会来上海一趟多难呀,尤其要买个卧铺,真是难上加难。

非常感谢单位领导给予的宝贵培训机会,之前说实话并未有全面系统的学过机器学习内容。但最重要的还是不知道:真实,工业级,业务上究竟怎么开展机器学习与业务的结合工作。这次培训基本给了我答案。transwarp 通过

推荐其支持托拉拽的机器学习产品sophon,让我直观的感受了整套机器学习工具平台的使用过程,以及机器学习模型的建模套路。其中之前我一直不太注重的有以下两点:

1.特征工程,归一化,字符串索引
2.评价指标,roc,方差和等

机器学习的算法

这里写图片描述

到底如何衡量业务是否需要机器学习?

  1. 业务问题是否适用机器学习算法?
  2. 如何选择模型
  3. 设计开发节奏
  4. 最终产品的检验

完整的数据发掘建模流程

这里写图片描述

特征工程

特征工程是机器学习的决定性因素是机器学习成功的关键

“数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已”
纵观Kaggle、KDD,阿里天池等国内外大大小小的比赛,每个竞赛的冠军其实
并没有用到很高深的算法,大多数都是在特征工程这个环节做出了出色的工作,
然后使用一些常见的算法,比如Linear Regression(线性回归),就能得到出色的
性能。

领域特定知识( domain specific knowledge),

这里写图片描述

最近还看到公众号上面一些好的文章,整取领悟以后分享出来

可视化托拉拽机器学习产品

KNIME https://www.knime.com/

对于机器学习和数据科学的初学者来说,最大的挑战之一是需要同时学习太多知识,特别是如果你不知道如何编码。你需要快速地适应线性代数、统计以及其他数学概念,并学习如何编码它们,对于新用户来说,这可能会有点难以承受。

如果你没有编码的背景并且发现很难学习下去,这时你可以用一个GUI驱动的工具来学习数据科学。当你刚开始学习的时候,可以集中精力学习实际的项目。一旦适应了基本的概念,你就可以在以后慢慢学习如何编写代码。

在今天的文章中,我将介绍一个基于GUI的工具:KNIME
这里写图片描述

sophon

星环还通过Transwarp Sophon来帮助数据工程师开发数据挖掘的应用。Sophon提供了可视化界面工具Midas 用于创建模型,用户只需通过拖拽数据源对象和运算符就能完成模型设计,然后将设计的模型在TDH集群上训 练或预测分析。

此外,Sophon还整合了深度学习框架Tensorflow,使用户可以通过拖拽生成各种神经网络模型,灵活调参和训练,将大数据和人工智能结合起来推动业务创新。

这里写图片描述

未完待续。。。。

相关文章
|
6月前
|
机器学习/深度学习 人工智能 前端开发
机器学习PAI常见问题之web ui 项目启动后页面打不开如何解决
PAI(平台为智能,Platform for Artificial Intelligence)是阿里云提供的一个全面的人工智能开发平台,旨在为开发者提供机器学习、深度学习等人工智能技术的模型训练、优化和部署服务。以下是PAI平台使用中的一些常见问题及其答案汇总,帮助用户解决在使用过程中遇到的问题。
|
6月前
|
机器学习/深度学习 数据采集 监控
大模型开发:描述一个典型的机器学习项目流程。
机器学习项目涉及问题定义、数据收集、预处理、特征工程、模型选择、训练、评估、优化、部署和监控。每个阶段都是确保模型有效可靠的关键,需要细致操作。
83 0
|
6月前
|
TensorFlow 算法框架/工具 开发工具
使用 TensorFlow 构建机器学习项目:6~10(3)
使用 TensorFlow 构建机器学习项目:6~10(3)
51 0
|
21天前
|
机器学习/深度学习 数据采集 Python
从零到一:手把手教你完成机器学习项目,从数据预处理到模型部署全攻略
【10月更文挑战第25天】本文通过一个预测房价的案例,详细介绍了从数据预处理到模型部署的完整机器学习项目流程。涵盖数据清洗、特征选择与工程、模型训练与调优、以及使用Flask进行模型部署的步骤,帮助读者掌握机器学习的最佳实践。
61 1
|
2月前
|
机器学习/深度学习 算法 TensorFlow
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
交通标志识别系统。本系统使用Python作为主要编程语言,在交通标志图像识别功能实现中,基于TensorFlow搭建卷积神经网络算法模型,通过对收集到的58种常见的交通标志图像作为数据集,进行迭代训练最后得到一个识别精度较高的模型文件,然后保存为本地的h5格式文件。再使用Django开发Web网页端操作界面,实现用户上传一张交通标志图片,识别其名称。
106 6
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
|
3月前
|
机器学习/深度学习 人工智能 数据处理
【人工智能】项目实践与案例分析:利用机器学习探测外太空中的系外行星
探测外太空中的系外行星是天文学和天体物理学的重要研究领域。随着望远镜观测技术的进步和大数据的积累,科学家们已经能够观测到大量恒星的光度变化,并尝试从中识别出由行星凌日(行星经过恒星前方时遮挡部分光线)引起的微小亮度变化。然而,由于数据量巨大且信号微弱,传统方法难以高效准确地识别所有行星信号。因此,本项目旨在利用机器学习技术,特别是深度学习,从海量的天文观测数据中自动识别和分类系外行星的信号。这要求设计一套高效的数据处理流程、构建适合的机器学习模型,并实现自动化的预测和验证系统。
70 1
【人工智能】项目实践与案例分析:利用机器学习探测外太空中的系外行星
|
3月前
|
机器学习/深度学习 分布式计算 算法
【算法工程师】成为一名优秀的机器学习算法工程师所需知识及资料汇总-附思维导图
成为一名优秀的机器学习算法工程师所需要具备的技能和知识,包括理论基础、数学能力、编程技能、实践经验以及对特定领域的深入了解,并提供了学习资源和面试准备建议。
115 3
【算法工程师】成为一名优秀的机器学习算法工程师所需知识及资料汇总-附思维导图
|
3月前
|
机器学习/深度学习 数据处理 定位技术
构建您的首个机器学习项目:从理论到实践
【8月更文挑战第28天】本文旨在为初学者提供一个简明的指南,通过介绍一个基础的机器学习项目——预测房价——来揭示机器学习的神秘面纱。我们将从数据收集开始,逐步深入到数据处理、模型选择、训练和评估等环节。通过实际操作,你将学会如何利用Python及其强大的科学计算库来实现自己的机器学习模型。无论你是编程新手还是有一定经验的开发者,这篇文章都将为你打开一扇通往机器学习世界的大门。
|
3月前
|
机器学习/深度学习 数据可视化 数据处理
Python vs R:机器学习项目中的实用性与生态系统比较
【8月更文第6天】Python 和 R 是数据科学和机器学习领域中最受欢迎的两种编程语言。两者都有各自的优点和适用场景,选择哪种语言取决于项目的具体需求、团队的技能水平以及个人偏好。本文将从实用性和生态系统两个方面进行比较,并提供代码示例来展示这两种语言在典型机器学习任务中的应用。
91 1
|
4月前
|
机器学习/深度学习 数据处理 Python
机器学习实战:房价预测项目
【7月更文挑战第13天】本文详细介绍了基于机器学习的房价预测项目的实战过程。从数据准备、特征工程、模型构建到结果评估,每一步都至关重要。通过合理的特征选择和模型优化,我们可以构建出性能优异的房价预测模型,为房地产行业的决策提供有力支持。未来,随着机器学习技术的不断发展和应用场景的不断拓展,房价预测模型将更加智能化和精准化。

热门文章

最新文章

下一篇
无影云桌面