HTAP数据库 PostgreSQL 场景与性能测试之 33 - (OLAP) 物联网 - 线性字段区间实时统计

本文涉及的产品
RDS MySQL DuckDB 分析主实例,集群系列 4核8GB
RDS AI 助手,专业版
简介:

标签

PostgreSQL , HTAP , OLTP , OLAP , 场景与性能测试


背景

PostgreSQL是一个历史悠久的数据库,历史可以追溯到1973年,最早由2014计算机图灵奖得主,关系数据库的鼻祖Michael_Stonebraker 操刀设计,PostgreSQL具备与Oracle类似的功能、性能、架构以及稳定性。

pic

PostgreSQL社区的贡献者众多,来自全球各个行业,历经数年,PostgreSQL 每年发布一个大版本,以持久的生命力和稳定性著称。

2017年10月,PostgreSQL 推出10 版本,携带诸多惊天特性,目标是胜任OLAP和OLTP的HTAP混合场景的需求:

《最受开发者欢迎的HTAP数据库PostgreSQL 10特性》

1、多核并行增强

2、fdw 聚合下推

3、逻辑订阅

4、分区

5、金融级多副本

6、json、jsonb全文检索

7、还有插件化形式存在的特性,如 向量计算、JIT、SQL图计算、SQL流计算、分布式并行计算、时序处理、基因测序、化学分析、图像分析 等。

pic

在各种应用场景中都可以看到PostgreSQL的应用:

pic

PostgreSQL近年来的发展非常迅猛,从知名数据库评测网站dbranking的数据库评分趋势,可以看到PostgreSQL向上发展的趋势:

pic

从每年PostgreSQL中国召开的社区会议,也能看到同样的趋势,参与的公司越来越多,分享的公司越来越多,分享的主题越来越丰富,横跨了 传统企业、互联网、医疗、金融、国企、物流、电商、社交、车联网、共享XX、云、游戏、公共交通、航空、铁路、军工、培训、咨询服务等 行业。

接下来的一系列文章,将给大家介绍PostgreSQL的各种应用场景以及对应的性能指标。

环境

环境部署方法参考:

《PostgreSQL 10 + PostGIS + Sharding(pg_pathman) + MySQL(fdw外部表) on ECS 部署指南(适合新用户)》

阿里云 ECS:56核,224G,1.5TB*2 SSD云盘

操作系统:CentOS 7.4 x64

数据库版本:PostgreSQL 10

PS:ECS的CPU和IO性能相比物理机会打一定的折扣,可以按下降1倍性能来估算。跑物理主机可以按这里测试的性能乘以2来估算。

场景 - 物联网 - 线性字段区间实时统计 (OLAP)

1、背景

在物联网、互联网、业务系统中都有时序数据,随着时间推移产生的数据。在时间维度或序列字段上呈现自增特性。

区间查询与统计分析的需求非常多。

PostgreSQL针对时序类型的数据,除了有传统的b-tree索引,还有一种块级索引BRIN,非常适合这种相关性很好的时序数据。这种索引在Oracle Exadata一体机上也有。而使用PostgreSQL可以免费享用这种高端特性。

在第15个场景中,设计了一个区间查询输出明细的场景,输出吞吐达到了 3160万 行/s。

《HTAP数据库 PostgreSQL 场景与性能测试之 15 - (OLTP) 物联网 - 查询一个时序区间的数据》

本文的场景与之类似,只不过换成聚合并输出。

2、设计

1万个传感器,10亿条时序自增记录,输入任意传感器,查询并输出任意区间5000条记录的聚合值。

3、准备测试表

create table t_sensor(  
  id serial,  
  val int,  
  ts timestamp default clock_timestamp()  
);  
do language plpgsql $$  
declare  
begin  
  for i in 1..10000 loop  
    execute format ('create table t_sensor%s (id serial, val int, ts timestamp default clock_timestamp()) inherits(t_sensor)', i);  
    execute format ('create index idx_t_sensor%s on t_sensor%s using brin(id)', i, i);  
  end loop;  
end;  
$$;  

4、准备测试函数(可选)

1、批量写入传感器数据的函数

create or replace function ins_sensor(int, int) returns void as $$  
declare  
begin  
  execute format('insert into t_sensor%s (val) select random()*1000 from generate_series(1,%s)', $1, $2);  
end;  
$$ language plpgsql;  

2、统计函数

create or replace function stats_sensor(int, int) returns float8 as $$  
declare  
  res float8;  
begin  
  execute format('select avg(val) from t_sensor%s where id>=%s and id<=%s', $1, $2, $2+5000) into res;  
  return res;  
end;  
$$ language plpgsql strict;  

5、准备测试数据

准备10亿条测试记录。

vi test.sql  
  
\set sid random(1,10000)  
select ins_sensor(:sid, 1000);  
pgbench -M prepared -n -r -P 1 -f ./test.sql -c 50 -j 50 -t 20000  

6、准备测试脚本

vi test.sql  
  
\set sid random(1,10000)  
\set range random(1,100000)  
select stats_sensor(:sid, :range);  

压测

CONNECTS=56  
TIMES=300  
export PGHOST=$PGDATA  
export PGPORT=1999  
export PGUSER=postgres  
export PGPASSWORD=postgres  
export PGDATABASE=postgres  
  
pgbench -M prepared -n -r -f ./test.sql -P 5 -c $CONNECTS -j $CONNECTS -T $TIMES  

7、测试

transaction type: ./test.sql  
scaling factor: 1  
query mode: prepared  
number of clients: 56  
number of threads: 56  
duration: 300 s  
number of transactions actually processed: 1881394  
latency average = 8.929 ms  
latency stddev = 4.260 ms  
tps = 6266.195309 (including connections establishing)  
tps = 6266.920752 (excluding connections establishing)  
script statistics:  
 - statement latencies in milliseconds:  
         0.002  \set sid random(1,10000)  
         0.001  \set range random(1,100000)  
         8.930  select stats_sensor(:sid, :range);  

TPS: 6266

10亿记录,1万个传感器,任意滑动范围内取5000条,进行统计,输出统计值。

平均响应时间: 8.9 毫秒

10亿记录,1万个传感器,任意滑动范围内取5000条,进行统计,输出统计值。

参考

《PostgreSQL、Greenplum 应用案例宝典《如来神掌》 - 目录》

《数据库选型之 - 大象十八摸 - 致 架构师、开发者》

《PostgreSQL 使用 pgbench 测试 sysbench 相关case》

《数据库界的华山论剑 tpc.org》

https://www.postgresql.org/docs/10/static/pgbench.html

相关实践学习
阿里云云原生数据仓库AnalyticDB MySQL版 使用教程
云原生数据仓库AnalyticDB MySQL版是一种支持高并发低延时查询的新一代云原生数据仓库,高度兼容MySQL协议以及SQL:92、SQL:99、SQL:2003标准,可以对海量数据进行即时的多维分析透视和业务探索,快速构建企业云上数据仓库。 了解产品 https://www.aliyun.com/product/ApsaraDB/ads
目录
相关文章
|
8月前
|
边缘计算 安全 5G
高精度时钟同步测试仪:构建全场景时间同步生态
在数字化转型中,时间同步至关重要。西安同步电子科技的 SYN5106 高精度时钟测试仪,具备±20ns 时差测量精度与 GPS/北斗双模授时能力,广泛应用于电力、通信、金融和科研领域。它解决变电站时间偏差、5G 基站同步误差及高频交易延迟等问题,助力智能电网、5G 网络和科研实验。产品便携可靠,支持多协议,满足国家安全要求,为各行业提供精准时间同步解决方案。未来将探索量子通信与深空探测等领域,持续推动技术创新。
|
4月前
|
人工智能 边缘计算 搜索推荐
AI产品测试学习路径全解析:从业务场景到代码实践
本文深入解析AI测试的核心技能与学习路径,涵盖业务理解、模型指标计算与性能测试三大阶段,助力掌握分类、推荐系统、计算机视觉等多场景测试方法,提升AI产品质量保障能力。
|
8月前
|
编解码 5G 定位技术
时间频率综合测试仪优势所在及场景使用介绍
时间频率综合测试仪是保障系统精准运行的关键设备。以西安同步电子科技有限公司的SYN5104型为例,它集时间标准源、时差测量和频率测试于一体,功能涵盖时间准确度、频率分析、PPS/B码/E1/PTP/NTP测试等,精度达30ns。其便携设计适用于研发、标定、现场检测,支持电力系统校准、通信同步测试及科研校准等场景,助力高精度时频同步与产品质量提升。文章版权归西安同步电子科技有限公司所有,严禁侵权。
|
传感器 物联网 区块链
新技术趋势与应用:探讨新兴技术如区块链、物联网、虚拟现实等的发展趋势和应用场景
在当今科技飞速发展的时代,新兴技术的涌现正在改变我们的生活和工作方式。本文将深入探讨区块链技术、物联网以及虚拟现实等新兴技术的发展趋势和应用场景。我们将从这些技术的本质出发,分析它们的发展现状,并展望未来可能带来的变革。同时,我们也将通过一些简单的代码示例,展示这些技术如何在实际中发挥作用。让我们一起探索这个充满无限可能的科技世界吧!
|
供应链 物联网 区块链
新技术趋势与应用:探讨新兴技术如区块链、物联网、虚拟现实等的发展趋势和应用场景
随着科技的飞速发展,新兴技术如区块链、物联网、虚拟现实等正逐渐改变我们的生活和工作方式。本文将对这些技术的发展趋势和应用场景进行深入探讨,以期为读者提供更全面、更深入的了解。
|
供应链 物联网 区块链
新技术趋势与应用:探讨新兴技术如区块链、物联网、虚拟现实等的发展趋势和应用场景
本文将探讨新兴技术的发展趋势和应用场景,包括区块链技术、物联网和虚拟现实等。我们将深入了解这些技术的发展现状,以及它们在未来可能带来的变革。同时,我们还将提供一些代码示例,以帮助读者更好地理解这些技术的应用。
|
JavaScript 安全 编译器
TypeScript 与 Jest 测试框架的结合使用,从 TypeScript 的测试需求出发,介绍了 Jest 的特点及其与 TypeScript 结合的优势,详细讲解了基本测试步骤、常见测试场景及异步操作测试方法
本文深入探讨了 TypeScript 与 Jest 测试框架的结合使用,从 TypeScript 的测试需求出发,介绍了 Jest 的特点及其与 TypeScript 结合的优势,详细讲解了基本测试步骤、常见测试场景及异步操作测试方法,并通过实际案例展示了其在项目中的应用效果,旨在提升代码质量和开发效率。
314 6
|
SQL 监控 测试技术
一次压测引发的数据库CPU飙升...
一次压测过程中,当数据库的qps和tps都正常时,如果cpu利用率异常的高,应该如何排查?希望通过这篇文章,给你一些启发。
|
传感器 监控 物联网
新技术趋势与应用:探讨新兴技术如物联网、虚拟现实等的发展趋势和应用场景###
本文探讨了物联网(IoT)与虚拟现实(VR)这两项新兴技术的快速发展及其在多个领域的应用场景。物联网通过设备互联、数据驱动和应用场景拓展,正在智能家居、智慧城市、工业自动化等方面带来革命性变化。虚拟现实则以其沉浸式体验和不断增强的交互性,在游戏娱乐、教育培训、医疗健康等领域展现出巨大潜力。结合具体案例分析,本文揭示了这些技术如何独立演进又相互融合,共同推动社会进步,并展望未来可能带来的变革。 ###
|
传感器 物联网 区块链
新技术趋势与应用:探讨新兴技术如区块链、物联网、虚拟现实等的发展趋势和应用场景
本文将探讨新兴技术的发展趋势和应用场景,包括区块链技术、物联网和虚拟现实等。我们将了解这些技术的原理和应用,并探讨它们在未来可能带来的影响。通过本文,您可以更好地理解这些新技术,并为未来做好准备。

相关产品

  • 云原生数据库 PolarDB
  • 云数据库 RDS PostgreSQL 版