TensorFlow Google大会总结

简介: 一、概述  介绍TPU,需要使用XLA编译,否则没有做内部优化,无法达到加速的效果;  TPU相关的性能分析器:二、新版本的输入库  之前TensorFlow的输入方式:feed_dict: 太过于低效Queue:     python多线程,全局锁的问题;同样低效,而且对应其中错...

一、概述

  介绍TPU,需要使用XLA编译,否则没有做内部优化,无法达到加速的效果;

  TPU相关的性能分析器:

二、新版本的输入库

  之前TensorFlow的输入方式:

    • feed_dict: 太过于低效
    • Queue:     python多线程,全局锁的问题;同样低效,而且对应其中错误的数据无法友好处理;

  现在: input pipeline

    相关函数:

      Dataset.XX()

      Dataset.XXX()

      Dataset.XXXX()

  more infomation about Dataset 

三、learn2learn

  功能: 由机器来设计神经网络

  依据: 进化算法

  解决性能问题工具:

    1、timeline   ----   通过chrome来对结果进行分析 

    2、nvprof

    3、XXX 

四、高层API:

  • Estimators
  • keras
  • canned Estimators

  只有Estimators支持分布式TensorFlow;

  recommended:

  使用高级api

  Estimators

  用tf.layer 或 tf.keras 来自定义模型

 TF Serving:

  用于将训练好的模型部署到生产环境中;

  • C++ lib 
    • 模型保存、输出
    • 通用核心架构
  • Binaries
    • 有一些自带的功能
    • 支持docker等  

五、TF Lite:

  用于支撑小型设备,例如手机等嵌入式设备

相关文章
|
5月前
|
机器学习/深度学习 人工智能 TensorFlow
TensorFlow 是一个由 Google 开发的开源深度学习框架
TensorFlow 是一个由 Google 开发的开源深度学习框架
68 3
|
机器学习/深度学习 存储 人工智能
Google Earth Engine(GEE)——TensorFlow支持深度学习等高级机器学习方法(非免费项目)
Google Earth Engine(GEE)——TensorFlow支持深度学习等高级机器学习方法(非免费项目)
1361 0
|
TensorFlow 算法框架/工具 索引
|
机器学习/深度学习 自然语言处理 算法
|
机器学习/深度学习 存储 人工智能
High&NewTech:2021 年Google谷歌 I/O 开发者大会 Kemal 等三人主题演讲分享《TensorFlow 在机器学习领域的进展》
High&NewTech:2021 年Google谷歌 I/O 开发者大会 Kemal 等三人主题演讲分享《TensorFlow 在机器学习领域的进展》
High&NewTech:2021 年Google谷歌 I/O 开发者大会 Kemal 等三人主题演讲分享《TensorFlow 在机器学习领域的进展》
|
机器学习/深度学习 运维 搜索推荐
Google Research吐嘈tensorflow!TF-Ranking迎来大更新:兼容Keras更容易开发
Github 2200星,备受好评的排序库tensorflow ranking最近又迎来大更新:新的架构,支持更多Tensor库!尤其是Keras,官方直言:用Keras可以让开发人员更方便地开发和部署。
333 0
Google Research吐嘈tensorflow!TF-Ranking迎来大更新:兼容Keras更容易开发
|
机器学习/深度学习 Java 程序员
斯坦福大师解读如何使用TensorFlow为Google Apps增压
Google宣布并开放了TensorFlow开源,这是其最新,最出色的机器学习库。基于在Mobile上运行的原因,App通过在设备上的TensorFlow中运行的捆绑式机器学习模型来完成这一壮举。Android示例页面提供了有关如何构建应用程序的想法,构建过程需要安装Android NDK和Google的构建工具Bazel,达到了生成此APK的目的。
142 0
斯坦福大师解读如何使用TensorFlow为Google Apps增压
|
机器学习/深度学习 分布式计算 监控
专访TensorFlow贡献者唐源:掌握 Google 深度学习框架的正确姿势
  自 2015 年底开源到如今更快、更灵活、更方便的 1.0 版本正式发布,由 Google 推出的第二代分布式机器学习系统 TensorFlow 一直在为我们带来惊喜,一方面是技术层面持续的迭代演进,从分布式版本、服务框架 TensorFlow Serving、上层封装 TF.Learn 到 Windows 支持、JIT 编译器 XLA、动态计算图框架 Fold 等,以及 Inception Net、SyntaxNet 等数不胜数的经典模型实现,TensorFlow 已然已经成为深度学习框架的事实标准之一。   而另一方面,在开源一年多的时间里,TensorFlow 已经帮助了包括研究人
298 0