MachineLearning之Logistic回归

简介: 一、概述 假设现在有一些数据点,我们用一条直线对这些点进行拟合(该线称为最佳拟合直线),这个拟合过程就称为回归; 利用Logistic回归进行分类的主要思想是: 根据现有数据对分类边界线建立回归公式, 以此进行分类。

一、概述

 假设现在有一些数据点,我们用一条直线对这些点进行拟合(该线称为最佳拟合直线),这个拟合过程就称为回归;

 利用Logistic回归进行分类的主要思想是: 根据现有数据对分类边界线建立回归公式, 以此进行分类。 这里的回归一词源于最佳拟合, 表示要找到最佳拟合参数集, 其背后的数学分析将在下一部分介绍。 训练分类器时的做法就是寻找最佳拟合参数, 使用的是最优化算法。

二、基于Logistic回归和Sigmoid函数的分类 

  单位阶跃函数也称海维赛德阶跃函数(Heaviside step function)
  Sigmoid函数:

    

  为了实现Logistic回归分类器, 我们可以在每个特征上乘以一个回归系数, 然后把所有的结果值相加, 将这个总和代入Sigmoid函数中, 进而得到一个范围在0~1之间的数值。 最后, 结果大于0.5的数据被归入1类, 小于0.5的即被归入0

类。 所以, Logistic回归也可以被看成是一种概率估计。

  那么现在问题来了? 在确定了分类器的函数形式之后,如何确定最佳回归系数【不同于 加权线性回归中的“权重”】呢?

  基于最优化方法的最佳回归系数确定

   梯度上升法 

目录
打赏
0
相关文章
R语言和STAN,JAGS:用RSTAN,RJAG建立贝叶斯多元线性回归预测选举数据
R语言和STAN,JAGS:用RSTAN,RJAG建立贝叶斯多元线性回归预测选举数据
使用Python实现简单的线性回归模型
【10月更文挑战第2天】使用Python实现简单的线性回归模型
84 1
数据分享|R语言GLM广义线性模型:逻辑回归、泊松回归拟合小鼠临床试验数据(剂量和反应)示例和自测题
数据分享|R语言GLM广义线性模型:逻辑回归、泊松回归拟合小鼠临床试验数据(剂量和反应)示例和自测题
R语言SIR模型网络结构扩散过程模拟SIR模型(Susceptible Infected Recovered )代码实例
R语言SIR模型网络结构扩散过程模拟SIR模型(Susceptible Infected Recovered )代码实例
回归分析讲解及一元线性回归和逻辑回归对iris数据集分析实战(附源码 超详细)
回归分析讲解及一元线性回归和逻辑回归对iris数据集分析实战(附源码 超详细)
335 0