三位女科学家联手,用AI算法将乳腺癌的筛查速度提高了100倍

简介:

最近美国癌症协会一份报告预计,美国今年约有40000名女性死于乳腺癌。造成该结果的原因之一,是诊断癌症肿瘤所需的时间太长——对此,研究人员们一直强调改进癌症的检测和预防,如果疾病在治愈率较高的早期阶段就被发现,往往能挽救更多生命。

现在,一个由麻省理工学院计算机科学与人工智能实验室(MIT’s Computer Science and Artificial Intelligence Laboratory,CSAIL)、马萨诸塞州总医院(Massachusetts General Hospital)和哈佛医学院(Harvard Medical School)科学家们组成的团队认为,AI技术可以解决这个难题。

三位女科学家联手,用AI算法将乳腺癌的分析速度提高了100倍

从左至右:马萨诸塞州总医院乳腺成像研究项目主任Manisha Bahl,麻省理工学院教授Regina Barzilay,哈佛医学院教授及马萨诸塞州总医院放射科的乳腺成像科主任Constance Lehman

用AI排查乳腺癌,可以避免手术“一刀切”

目前,乳腺X射线检查(Mammograms)是乳腺癌的最佳诊断工具——从X光片上看到可疑的病变组织之后,需要对患者进行针刺活检以检测是否患癌。

然而,这一工具总会存在风险,譬如误诊。当尝试提高可以识别的癌症数量时,“假阳性”的结果也会增加,导致患者进行不必要的活检和手术。

也就是说,“假阳性”的一个常见原因是所谓的“高风险”病变,当通过针刺活检进行测试时,这些病变在乳腺X射线照片上看起来很可疑,并且具有异常细胞。这种情况下,医生通常采取不同的措施:有些医生对所有的”高危病变“都进行手术去除,有些则对“较高癌症发生率的病变”进行手术,例如“非典型乳管增生”(ADH)或“小叶原位癌”(LCIS)。

第一种方法要求患者经历痛苦、耗时且昂贵的手术,甚至有些手术毫无必要;第二种方法也存在不精确的情况,可能导致ADH和LCIS以外的“高风险病变”成为漏网之“癌”。

三位女科学家联手,用AI算法将乳腺癌的分析速度提高了100倍

图:乳腺X射线检查仪

那么如何避免不必要的手术,同时仍然保持乳腺X射线检查的重要作用?

开篇所提到的三位女科学家团队,联手开发了一套机器学习模型,被称为“随机森林分类器(random-forest classifier)”的方法,并让它接受了600个高风险病灶的分析训练。

在综合了家族遗传史、人口统计、以及过往的组织活检和病理报告等信息之后,该模型对 335 个病灶(最终升级为癌症的病患)进行了测试,结果准确诊断了97%的乳腺癌是恶性肿瘤,而传统方法仅为79%。

这项研究的结论是:在将该机器学习模型引入常规诊断实践后,超过30%的良性病灶切除术是可以避免的。

同时。该技术的工作速度比乳腺X射线检查快30倍——据估计,医生需要50-70个小时来分析50名乳腺癌患者,而该技术只需要约30分钟,相当于提高了100倍。

三位女科学家联手,用AI算法将乳腺癌的分析速度提高了100倍

图:数字化乳腺X射线检查

这一系统或许能替代传统的乳腺X射线片子,帮助女性做出明智的决定,采取最好的治疗方法。

Regina Barzilay是麻省理工学院电子工程与计算机科学教授,同时也是一名乳腺癌幸存者,她认:“当数据有这么多的不确定性时,机器学习就是我们需要的、用于改进检测和防止过度治疗的工具,这是一个趋势。”

哈佛医学院教授及马萨诸塞州总医院放射科的乳腺成像科主任Constance Lehman是这个项目的参与者之一。她强调,“据我们所知,这是第一个将机器学习应用于区分需要进行手术的高风险病变和不需要进行手术的高风险病变的研究。”

Lehman介绍,过去,医生可能会建议所有高风险的病变都要进行手术切除。但现在,如果该模型确定病变对特定患者来说的癌变机率很低,我们可以与病人就她的选择采取更有针对性的医疗方法。

她还透露,马萨诸塞州总医院放射科的医生将从明年开始将该模型纳入其临床实践。

马萨诸塞州总医院乳腺成像研究项目主任Manisha Bahl也支持这种看法,她表示,她们的目标是在临床环境中应用该工具。未来,他们希望将乳腺X射线照片、病理幻灯片图像( images of the pathology slides)、以及医疗记录中更广泛的患者信息结合,从而将该模型发展成为适用于其他类型的癌症甚至完全是其他类型的疾病。

Debashish Ghosh则认为,尽管人工智能技术很强,但是更适合美国而不是英国,因为统计显示在英国只有不到5%的患者接受了乳腺癌手术,而在美国这一比例是30%,说明英国患者本就有自己的选择。

有关这项研究的详情,已经发表在近日出版的《放射学》(Radiology)期刊上。


原文发布时间为: 2017年10月23日

本文作者:周雅

本文来自云栖社区合作伙伴至顶网,了解相关信息可以关注至顶网。

相关文章
|
12天前
|
人工智能 编解码 算法
DeepSeek加持的通义灵码2.0 AI程序员实战案例:助力嵌入式开发中的算法生成革新
本文介绍了通义灵码2.0 AI程序员在嵌入式开发中的实战应用。通过安装VS Code插件并登录阿里云账号,用户可切换至DeepSeek V3模型,利用其强大的代码生成能力。实战案例中,AI程序员根据自然语言描述快速生成了C语言的base64编解码算法,包括源代码、头文件、测试代码和CMake编译脚本。即使在编译错误和需求迭代的情况下,AI程序员也能迅速分析问题并修复代码,最终成功实现功能。作者认为,通义灵码2.0显著提升了开发效率,打破了编程语言限制,是AI编程从辅助工具向工程级协同开发转变的重要标志,值得开发者广泛使用。
7862 67
DeepSeek加持的通义灵码2.0 AI程序员实战案例:助力嵌入式开发中的算法生成革新
|
7天前
|
数据采集 人工智能 编解码
算法系统协同优化,vivo与港中文推出BlueLM-V-3B,手机秒变多模态AI专家
BlueLM-V-3B是由vivo与香港中文大学共同研发的多模态大型语言模型,专为移动设备优化。它通过算法和系统协同优化,实现了高效部署和快速生成速度(24.4 token/s),并在OpenCompass基准测试中取得优异成绩(66.1分)。模型小巧,语言部分含27亿参数,视觉编码器含4000万参数,适合移动设备使用。尽管如此,低端设备可能仍面临资源压力,实际应用效果需进一步验证。论文链接:https://arxiv.org/abs/2411.10640。
29 9
|
16天前
|
人工智能 算法
细思极恐,GPT-4竟串谋AI欺骗人类!哈佛PSU重磅揭秘算法共谋,AI教父预言正成真
近日,哈佛大学和宾夕大合著的重磅论文揭示,基于大型语言模型(如GPT-4)的算法可能自主串谋,损害消费者利益。研究发现,这些算法在虚拟市场中能迅速达成默契,提高价格以获取更高利润,类似于人类垄断行为。这一现象曾被DeepMind联合创始人Shane Legg预言,如今成为现实。论文呼吁加强对AI的监管,确保其透明性和可解释性,以防止潜在风险,并促进AI的可持续发展。
25 6
|
8天前
|
机器学习/深度学习 自然语言处理 算法
生成式 AI 大语言模型(LLMs)核心算法及源码解析:预训练篇
生成式 AI 大语言模型(LLMs)核心算法及源码解析:预训练篇
|
2月前
|
机器学习/深度学习 人工智能 算法
Transformer打破三十年数学猜想!Meta研究者用AI给出反例,算法杀手攻克数学难题
《PatternBoost: Constructions in Mathematics with a Little Help from AI》提出了一种结合传统搜索算法和Transformer神经网络的PatternBoost算法,通过局部搜索和全局优化交替进行,成功应用于组合数学问题。该算法在图论中的Ramsey数研究中找到了更小的反例,推翻了一个30年的猜想,展示了AI在数学研究中的巨大潜力,但也面临可解释性和通用性的挑战。论文地址:https://arxiv.org/abs/2411.00566
94 13
|
3月前
|
机器学习/深度学习 人工智能 算法
Enhance-A-Video:上海 AI Lab 推出视频生成质量增强算法,显著提升 AI 视频生成的真实度和细节表现
Enhance-A-Video 是由上海人工智能实验室、新加坡国立大学和德克萨斯大学奥斯汀分校联合推出的视频生成质量增强算法,能够显著提升视频的对比度、清晰度和细节真实性。
138 8
Enhance-A-Video:上海 AI Lab 推出视频生成质量增强算法,显著提升 AI 视频生成的真实度和细节表现
|
2月前
|
机器学习/深度学习 存储 人工智能
淘天算法工程师玩转《黑神话》,多模态大模型如何成为天命AI
淘天集团未来生活实验室的算法工程师们以ARPG游戏《黑神话:悟空》为平台,探索多模态大模型(VLM)在仅需纯视觉输入和复杂动作输出场景中的能力边界。他们提出了一种名为VARP的新框架,该框架由动作规划系统和人类引导的轨迹系统组成,成功在90%的简单和中等难度战斗场景中取得胜利。研究展示了VLMs在传统上由强化学习主导的任务中的潜力,并提供了宝贵的人类操作数据集,为未来研究奠定了基础。
|
3月前
|
机器学习/深度学习 缓存 人工智能
【AI系统】QNNPack 算法
QNNPACK是Marat Dukhan开发的量化神经网络计算加速库,专为移动端优化,性能卓越。本文介绍QNNPACK的实现,包括间接卷积算法、内存重排和间接缓冲区等关键技术,有效解决了传统Im2Col+GEMM方法存在的空间消耗大、缓存效率低等问题,显著提升了量化神经网络的计算效率。
66 6
【AI系统】QNNPack 算法
|
3月前
|
存储 人工智能 缓存
【AI系统】Im2Col 算法
Caffe 作为早期的 AI 框架,采用 Im2Col 方法优化卷积计算。Im2Col 将卷积操作转换为矩阵乘法,通过将输入数据重排为连续内存中的矩阵,减少内存访问次数,提高计算效率。该方法首先将输入图像转换为矩阵,然后利用 GEMM 库加速计算,最后将结果转换回原格式。这种方式显著提升了卷积计算的速度,尤其适用于通道数较多的卷积层。
84 5
【AI系统】Im2Col 算法
|
3月前
|
存储 机器学习/深度学习 人工智能
【AI系统】Winograd 算法
本文详细介绍Winograd优化算法,该算法通过增加加法操作来减少乘法操作,从而加速卷积计算。文章首先回顾Im2Col技术和空间组合优化,然后深入讲解Winograd算法原理及其在一维和二维卷积中的应用,最后讨论算法的局限性和实现步骤。Winograd算法在特定卷积参数下表现优异,但其应用范围受限。
75 2
【AI系统】Winograd 算法

热门文章

最新文章