C++11 多线程

简介: C++11开始支持多线程编程,之前多线程编程都需要系统的支持,在不同的系统下创建线程需要不同的API如pthread_create(),Createthread(),beginthread()等,使用起来都比较复杂,C++11提供了新头文件、、、等用于支持多线程。

C++11开始支持多线程编程,之前多线程编程都需要系统的支持,在不同的系统下创建线程需要不同的API如pthread_create(),Createthread(),beginthread()等,使用起来都比较复杂,C++11提供了新头文件<thread>、<mutex>、<atomic>、<future>等用于支持多线程。

使用C++11开启一个线程是比较简单的,下面来看一个简单的例子:

#include <thread>

#include <iostream>

 

void hello()

{

    std::cout << "Hello from thread " << std::endl;

}

 

int main()

{

    std::thread t1(hello);

    t1.join();

std::cout<<"Main Thread"<<std::endl;

    return 0;

}

运行结果:

说明,通过thread 类直接申明一个线程t1,参数是这个线程执行的回调函数的地址,通过jion()方法阻塞主线程,直到t1线程执行结束为止。

 

         C++11支持Lambda表达式,因此一个新线程的回调函数也可以是有一个Lambda表达式的形式,但是注意如果使用Lambda表达式最好不要使用引用的方式,应该使用值传递的方式来访问数据,在多线程中使用引用容易造成混乱。下面这个例子稍微复杂,创建了多个子线程,并使用了get_id()方法来获取当前线程的id。

#include <thread>

#include <iostream>

#include <vector>

 

int main()

{

    std::vector<std::thread> threads;

 

    for(int i = 0; i < 5; ++i){

        threads.push_back(std::thread([](){

            std::cout << "Hello from lamda thread " << std::this_thread::get_id() << std::endl;

        }));

    }

 

    for(auto& thread : threads){

        thread.join();

    }

 

    std::cout<<"Main Thread"<<"\t"<<std::this_thread::get_id()<<std::endl;

    return 0;

}

运行结果:

上述代码中,使用vector来存放每个线程,线程的回调函数通过Lambda表达式产生,注意后面join的使用方式。

 

可以通过sleep_for来使线程睡眠一定的时间:

#include <thread>

#include <iostream>

#include <mutex>

using namespace std;

 

int main()

{

    std::mutex m;

    thread t1([&m]()

    {

        std::this_thread::sleep_for (chrono::seconds(10)); 

        for(int i=0;i<10;i++) 

         {     

            m.lock(); 

                cout <<  "In t1 ThreadID : " << std::this_thread::get_id() << ":" << i << endl;         

            m.unlock (); 

        } 

    } );

 

    thread t2([&m]() 

    {          

        std::this_thread::sleep_for (chrono::seconds(1)); 

        for(int i=0;i<10;i++) 

        {         

            m.lock (); 

                cout <<  "In t2 ThreadID : " << std::this_thread::get_id() << ":" << i << endl;         

            m.unlock(); 

        } 

    } ); 

    t1.join();     

    t2.join();     

 

    cout<<"Main Thread"<<endl;

 

    return 0;

}

运行结果:

可以看出,由于线程t1睡眠的时间较长,t2先执行了。

延时有这几种类型:nanoseconds、microseconds、milliseconds、seconds、minutes、hours。

在使用多线程的程序中操作共享数据的时候一定要小心,由于线程的乱序执行,可能会得到意想不到的结果。通过下面的程序来看:

#include <thread>

#include <iostream>

#include <vector>

#include <mutex>

 

struct Counter {

    std::mutex mutex;

    int value;

 

    Counter() : value(0) {}

 

    void increment(){

       // mutex.lock();                【1】表示没有使用锁

        ++value;

       // mutex.unlock();              【1】

    }

 

    void decrement(){

        mutex.lock();

        --value;

        mutex.unlock();

    }

};

 

int main(){

    Counter counter;

 

    std::vector<std::thread> threads;

 

    for(int i = 0; i < 5; ++i){

        threads.push_back(std::thread([&](){

            for(int i = 0; i < 10000; ++i){

                counter.increment();

            }

        }));

    }

 

    for(auto& thread : threads){

        thread.join();

    }

 

    std::cout << counter.value << std::endl;

 

    return 0;

}

运行结果:

【1】

运行结果:(使用了锁)

说明:由于创建线程是使用lambda表达式,并使用引用的方式访问counter这个变量,当没有使用lock来保护的时候(情况【1】),执行的结果可能不像预期的5000(程序的意思是每个线程使counter中的value自加1000次,5个线程运行结束的时候应该是5000),当没有使用锁的时候自加的操作可能被其他线程打断,因此结果可能会小于5000。

 

 

make it simple, make it happen
目录
相关文章
|
存储 消息中间件 资源调度
C++ 多线程之初识多线程
这篇文章介绍了C++多线程的基本概念,包括进程和线程的定义、并发的实现方式,以及如何在C++中创建和管理线程,包括使用`std::thread`库、线程的join和detach方法,并通过示例代码展示了如何创建和使用多线程。
183 1
C++ 多线程之初识多线程
|
缓存 安全 C++
C++无锁队列:解锁多线程编程新境界
【10月更文挑战第27天】
850 7
|
消息中间件 存储 安全
|
存储 并行计算 安全
C++多线程应用
【10月更文挑战第29天】C++ 中的多线程应用广泛,常见场景包括并行计算、网络编程中的并发服务器和图形用户界面(GUI)应用。通过多线程可以显著提升计算速度和响应能力。示例代码展示了如何使用 `pthread` 库创建和管理线程。注意事项包括数据同步与互斥、线程间通信和线程安全的类设计,以确保程序的正确性和稳定性。
272 5
|
存储 前端开发 C++
C++ 多线程之带返回值的线程处理函数
这篇文章介绍了在C++中使用`async`函数、`packaged_task`和`promise`三种方法来创建带返回值的线程处理函数。
513 6
|
缓存 负载均衡 Java
c++写高性能的任务流线程池(万字详解!)
本文介绍了一种高性能的任务流线程池设计,涵盖多种优化机制。首先介绍了Work Steal机制,通过任务偷窃提高资源利用率。接着讨论了优先级任务,使不同优先级的任务得到合理调度。然后提出了缓存机制,通过环形缓存队列提升程序负载能力。Local Thread机制则通过预先创建线程减少创建和销毁线程的开销。Lock Free机制进一步减少了锁的竞争。容量动态调整机制根据任务负载动态调整线程数量。批量处理机制提高了任务处理效率。此外,还介绍了负载均衡、避免等待、预测优化、减少复制等策略。最后,任务组的设计便于管理和复用多任务。整体设计旨在提升线程池的性能和稳定性。
316 5
|
C++
C++ 多线程之线程管理函数
这篇文章介绍了C++中多线程编程的几个关键函数,包括获取线程ID的`get_id()`,延时函数`sleep_for()`,线程让步函数`yield()`,以及阻塞线程直到指定时间的`sleep_until()`。
305 0
C++ 多线程之线程管理函数
|
资源调度 Linux 调度
Linux C/C++之线程基础
这篇文章详细介绍了Linux下C/C++线程的基本概念、创建和管理线程的方法,以及线程同步的各种机制,并通过实例代码展示了线程同步技术的应用。
230 0
Linux C/C++之线程基础
|
Java 调度
基于C++11的线程池
基于C++11的线程池
|
Dart 编译器 API
Dart ffi 使用问题之在C++线程中无法直接调用Dart函数的问题如何解决
Dart ffi 使用问题之在C++线程中无法直接调用Dart函数的问题如何解决

热门文章

最新文章