HTAP数据库 PostgreSQL 场景与性能测试之 18 - (OLAP) 用户画像圈人场景 - 数组包含查询与聚合

本文涉及的产品
RDS MySQL DuckDB 分析主实例,集群系列 4核8GB
RDS AI 助手,专业版
简介:

标签

PostgreSQL , HTAP , OLTP , OLAP , 场景与性能测试


背景

PostgreSQL是一个历史悠久的数据库,历史可以追溯到1973年,最早由2014计算机图灵奖得主,关系数据库的鼻祖Michael_Stonebraker 操刀设计,PostgreSQL具备与Oracle类似的功能、性能、架构以及稳定性。

pic

PostgreSQL社区的贡献者众多,来自全球各个行业,历经数年,PostgreSQL 每年发布一个大版本,以持久的生命力和稳定性著称。

2017年10月,PostgreSQL 推出10 版本,携带诸多惊天特性,目标是胜任OLAP和OLTP的HTAP混合场景的需求:

《最受开发者欢迎的HTAP数据库PostgreSQL 10特性》

1、多核并行增强

2、fdw 聚合下推

3、逻辑订阅

4、分区

5、金融级多副本

6、json、jsonb全文检索

7、还有插件化形式存在的特性,如 向量计算、JIT、SQL图计算、SQL流计算、分布式并行计算、时序处理、基因测序、化学分析、图像分析 等。

pic

在各种应用场景中都可以看到PostgreSQL的应用:

pic

PostgreSQL近年来的发展非常迅猛,从知名数据库评测网站dbranking的数据库评分趋势,可以看到PostgreSQL向上发展的趋势:

pic

从每年PostgreSQL中国召开的社区会议,也能看到同样的趋势,参与的公司越来越多,分享的公司越来越多,分享的主题越来越丰富,横跨了 传统企业、互联网、医疗、金融、国企、物流、电商、社交、车联网、共享XX、云、游戏、公共交通、航空、铁路、军工、培训、咨询服务等 行业。

接下来的一系列文章,将给大家介绍PostgreSQL的各种应用场景以及对应的性能指标。

环境

环境部署方法参考:

《PostgreSQL 10 + PostGIS + Sharding(pg_pathman) + MySQL(fdw外部表) on ECS 部署指南(适合新用户)》

阿里云 ECS:56核,224G,1.5TB*2 SSD云盘

操作系统:CentOS 7.4 x64

数据库版本:PostgreSQL 10

PS:ECS的CPU和IO性能相比物理机会打一定的折扣,可以按下降1倍性能来估算。跑物理主机可以按这里测试的性能乘以2来估算。

场景 - 用户画像圈人场景 - 数组包含查询与聚合 (OLAP)

1、背景

数组是PostgreSQL的一种多值类型,可以存储多个同类元素。在业务系统设计时,可以使用数组存储 标签、聚合属性 等。

例如用户画像系统,使用数组存储用户的标签。当需要根据标签组合圈选一批用户时,使用数组的包含、相交等手段来筛选选中的记录。

包含表示包含目标条件中的所有标签。

相交表示包含目标条件中的任意标签。

2、设计

1亿条记录,每条记录包含16个标签,标签的取值范围1万。另外包含3个属性字段用于透视。

3、准备测试表

create table t_arr_label(
  id int,
  c1 int,
  c2 int,
  c3 int,
  label int[]
);

4、准备测试函数(可选)

在若干范围内,生成包含若干个随机值的数组

create or replace function gen_rand_arr(int,int) returns int[] as $$    
  select array_agg((random()*$1)::int) from generate_series(1,$2);    
$$ language sql strict;    

测试搜索包含若干个元素的记录,并进行透视,输出透视结果。

create or replace function f_test () returns setof record as $$  
declare  
  varr int[];  
begin  
  -- 产生一个随机数组  (包含任意3个标签)   
  select gen_rand_arr(10000, 3) into varr;  
  -- 根据标签筛选数据,并进行透视输出。
  return query select c1,c2,c3,count(*) from t_arr_label where label @> varr group by grouping sets ((c1),(c2),(c3)); 
end;  
$$ language plpgsql strict;  

5、准备测试数据

insert into t_arr_label select id, random()*100, random()*10, random()*2, gen_rand_arr(10000, 16) from generate_series(1,100000000) t(id);

create index idx_t_arr_label on t_arr_label using gin (label);

6、准备测试脚本

vi test.sql  
  
select * from f_test() as t(c1 int, c2 int, c3 int ,cnt int8);

7、测试

单次相似查询效率,响应时间低于 20 毫秒。(使用绑定变量、并且CACHE命中后,响应时间更低。)

postgres=# select c1,c2,c3,count(*) from t_arr_label where label @> '{1,2}' group by grouping sets ((c1),(c2),(c3));
 c1  | c2 | c3 | count 
-----+----+----+-------
   1 |    |    |     6
   4 |    |    |     1
   6 |    |    |     2
   8 |    |    |     1
.............
  98 |    |    |     3
  99 |    |    |     1
 100 |    |    |     2
     |    |  0 |    62
     |    |  1 |   149
     |    |  2 |    53
     |  0 |    |     9
     |  1 |    |    22
     |  2 |    |    30
     |  3 |    |    26
     |  4 |    |    22
     |  5 |    |    23
     |  6 |    |    34
     |  7 |    |    22
     |  8 |    |    31
     |  9 |    |    33
     | 10 |    |    12
(102 rows)

Time: 16.050 ms



postgres=# explain (analyze,verbose,timing,costs,buffers) select c1,c2,c3,count(*) from t_arr_label where label @> '{1,2}' group by grouping sets ((c1),(c2),(c3));
                                                                QUERY PLAN                                                                
------------------------------------------------------------------------------------------------------------------------------------------
 GroupAggregate  (cost=111.75..121.83 rows=222 width=20) (actual time=15.402..15.590 rows=102 loops=1)
   Output: c1, c2, c3, count(*)
   Group Key: t_arr_label.c1
   Sort Key: t_arr_label.c3
     Group Key: t_arr_label.c3
   Sort Key: t_arr_label.c2
     Group Key: t_arr_label.c2
   Buffers: shared hit=419
   ->  Sort  (cost=111.75..111.97 rows=90 width=12) (actual time=15.394..15.422 rows=264 loops=1)
         Output: c1, c2, c3
         Sort Key: t_arr_label.c1
         Sort Method: quicksort  Memory: 37kB
         Buffers: shared hit=419
         ->  Bitmap Heap Scan on public.t_arr_label  (cost=17.70..108.82 rows=90 width=12) (actual time=14.711..15.327 rows=264 loops=1)
               Output: c1, c2, c3
               Recheck Cond: (t_arr_label.label @> '{1,2}'::integer[])
               Heap Blocks: exact=264
               Buffers: shared hit=419
               ->  Bitmap Index Scan on idx_t_arr_label  (cost=0.00..17.68 rows=90 width=0) (actual time=14.676..14.676 rows=264 loops=1)
                     Index Cond: (t_arr_label.label @> '{1,2}'::integer[])
                     Buffers: shared hit=155
 Planning time: 0.133 ms
 Execution time: 15.653 ms
(23 rows)

Time: 16.217 ms

压测

CONNECTS=56  
TIMES=300  
export PGHOST=$PGDATA  
export PGPORT=1999  
export PGUSER=postgres  
export PGPASSWORD=postgres  
export PGDATABASE=postgres  
  
pgbench -M prepared -n -r -f ./test.sql -P 5 -c $CONNECTS -j $CONNECTS -T $TIMES  

8、测试结果

transaction type: ./test.sql
scaling factor: 1
query mode: prepared
number of clients: 56
number of threads: 56
duration: 300 s
number of transactions actually processed: 532217
latency average = 31.565 ms
latency stddev = 5.183 ms
tps = 1773.127087 (including connections establishing)
tps = 1773.172254 (excluding connections establishing)
script statistics:
 - statement latencies in milliseconds:
        31.565  select * from f_test() as t(c1 int, c2 int, c3 int ,cnt int8);

TPS: 1773

平均响应时间: 31.565 毫秒

PostgreSQL真正实现了毫秒级圈选和透视分析。

参考

《PostgreSQL、Greenplum 应用案例宝典《如来神掌》 - 目录》

《数据库选型之 - 大象十八摸 - 致 架构师、开发者》

《PostgreSQL 使用 pgbench 测试 sysbench 相关case》

《数据库界的华山论剑 tpc.org》

https://www.postgresql.org/docs/10/static/pgbench.html

相关实践学习
阿里云云原生数据仓库AnalyticDB MySQL版 使用教程
云原生数据仓库AnalyticDB MySQL版是一种支持高并发低延时查询的新一代云原生数据仓库,高度兼容MySQL协议以及SQL:92、SQL:99、SQL:2003标准,可以对海量数据进行即时的多维分析透视和业务探索,快速构建企业云上数据仓库。 了解产品 https://www.aliyun.com/product/ApsaraDB/ads
目录
相关文章
|
4月前
|
存储 人工智能 关系型数据库
阿里云AnalyticDB for PostgreSQL 入选VLDB 2025:统一架构破局HTAP,Beam+Laser引擎赋能Data+AI融合新范式
在数据驱动与人工智能深度融合的时代,企业对数据仓库的需求早已超越“查得快”这一基础能力。面对传统数仓挑战,阿里云瑶池数据库AnalyticDB for PostgreSQL(简称ADB-PG)创新性地构建了统一架构下的Shared-Nothing与Shared-Storage双模融合体系,并自主研发Beam混合存储引擎与Laser向量化执行引擎,全面解决HTAP场景下性能、弹性、成本与实时性的矛盾。 近日,相关研究成果发表于在英国伦敦召开的数据库领域顶级会议 VLDB 2025,标志着中国自研云数仓技术再次登上国际舞台。
468 0
|
9月前
|
存储 SQL 关系型数据库
拉卡拉 x Apache Doris:统一金融场景 OLAP 引擎,查询提速 15 倍,资源直降 52%
拉卡拉早期基于 Lambda 架构构建数据系统面临存储成本高、实时写入性能差、复杂查询耗时久、组件维护复杂等问题。为此,拉卡拉选择使用 Apache Doris 替换 Elasticsearch、Hive、Hbase、TiDB、Oracle / MySQL 等组件,实现了 OLAP 引擎的统一、查询性能提升 15 倍、资源减少 52% 的显著成效。
447 6
拉卡拉 x Apache Doris:统一金融场景 OLAP 引擎,查询提速 15 倍,资源直降 52%
|
SQL NoSQL 关系型数据库
实时数仓Hologres发展问题之实时数仓的类数据库化与HTAP数据库的差异如何解决
实时数仓Hologres发展问题之实时数仓的类数据库化与HTAP数据库的差异如何解决
205 2
|
11月前
|
关系型数据库 分布式数据库 PolarDB
通过 PolarDB for PostgreSQL 实现一体化的 HTAP 能力
阿里云 PolarDB for PostgreSQL作为一款领先的云原生关系型数据库,利用向量化引擎+列存索引等技术实现了 OLTP 和 OLAP 的一体化。本方案为您展示如何通过 PolarDB for PostgreSQL 来实现一体化的 HTAP 能力。
通过 PolarDB for PostgreSQL 实现一体化的 HTAP 能力
|
11月前
|
SQL 关系型数据库 OLAP
云原生数据仓库AnalyticDB PostgreSQL同一个SQL可以实现向量索引、全文索引GIN、普通索引BTREE混合查询,简化业务实现逻辑、提升查询性能
本文档介绍了如何在AnalyticDB for PostgreSQL中创建表、向量索引及混合检索的实现步骤。主要内容包括:创建`articles`表并设置向量存储格式,创建ANN向量索引,为表增加`username`和`time`列,建立BTREE索引和GIN全文检索索引,并展示了查询结果。参考文档提供了详细的SQL语句和配置说明。
411 2
|
Java 数据库连接 数据库
实时数仓 Hologres产品使用合集之怎么查询版本
实时数仓Hologres是阿里云推出的一款高性能、实时分析的数据库服务,专为大数据分析和复杂查询场景设计。使用Hologres,企业能够打破传统数据仓库的延迟瓶颈,实现数据到决策的无缝衔接,加速业务创新和响应速度。以下是Hologres产品的一些典型使用场景合集。
|
关系型数据库 OLAP 分布式数据库
揭秘Polardb与OceanBase:从OLTP到OLAP,你的业务选对数据库了吗?热点技术对比,激发你的选择好奇心!
【8月更文挑战第22天】在数据库领域,阿里巴巴的Polardb与OceanBase各具特色。Polardb采用共享存储架构,分离计算与存储,适配高并发OLTP场景,如电商交易;OceanBase利用灵活的分布式架构,优化数据分布与处理,擅长OLAP分析及大规模数据管理。选择时需考量业务特性——Polardb适合事务密集型应用,而OceanBase则为数据分析提供强大支持。
4669 2
|
SQL 分布式计算 调度
实时数仓 Hologres操作报错合集之在与PostgreSOL数据库进行通信时出现报错,如何解决
实时数仓Hologres是阿里云推出的一款高性能、实时分析的数据库服务,专为大数据分析和复杂查询场景设计。使用Hologres,企业能够打破传统数据仓库的延迟瓶颈,实现数据到决策的无缝衔接,加速业务创新和响应速度。以下是Hologres产品的一些典型使用场景合集。
|
缓存 数据库
实时数仓 Hologres产品使用合集之如何查看并分析历史查询语句
实时数仓Hologres是阿里云推出的一款高性能、实时分析的数据库服务,专为大数据分析和复杂查询场景设计。使用Hologres,企业能够打破传统数据仓库的延迟瓶颈,实现数据到决策的无缝衔接,加速业务创新和响应速度。以下是Hologres产品的一些典型使用场景合集。
|
存储 SQL 数据库
实时数仓 Hologres产品使用合集之如何查看当前数据库下的所有表和表属性
实时数仓Hologres是阿里云推出的一款高性能、实时分析的数据库服务,专为大数据分析和复杂查询场景设计。使用Hologres,企业能够打破传统数据仓库的延迟瓶颈,实现数据到决策的无缝衔接,加速业务创新和响应速度。以下是Hologres产品的一些典型使用场景合集。

相关产品

  • 云原生数据库 PolarDB
  • 云数据库 RDS PostgreSQL 版
  • 推荐镜像

    更多