filebeat实践-内存占用-最大内存占用

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
简介: filebeat作为日志采集agent, 是需要部署到生产服务器上的.不理解filebeat的工作机制,不了解filebeat在实际生产使用中的内存使用将会给你带来意想不到的麻烦.

filebeat作为日志采集agent, 是需要部署到生产服务器上的.不理解filebeat的工作机制,不了解filebeat在实际生产使用中的内存使用将会给你带来意想不到的麻烦.

有些文章说filebeat内存消耗很少,不会超过100M, 这简直是不负责任的胡说,假如带着这样的认识把filebeat部署到生产服务器上就等着哭吧.

filebeat在空载情况(没有日志可采集)下的确不会有大的内存开销,但在有大量的日志需要采集时,filebeat的内存占用是没有固定值的, 那有没有理论值呢?答案是有, 为啥这么说,看下面公式:

                              bytes_each_log * spool_size * M + a*N

其中, bytes_each_log是单条日志大小, spool_size是配置文件里配置项,  M是单条日志在内存里的溢价系数(>1), N表示采集的文件个数,a为常数.

spool_size的默认值是2048, 好多人估计都不会配置这个项,也会因此埋下祸根(OOM):


10MB为filebeat支持的单条日志最大长度,超过的将会被截断丢弃

假设忽略a*N部分的内存开销, 单条日志的内存溢价为3, 一旦出现单条日志大于50KB且有瞬间爆发量的时候, filebeat的内存占用将大于300MB,是不是有点吓人!如果出现了极端情况,单条日志>10M,即使filebeat会截断到10M那也是20GB!!是不是腿都软了!!!

filebeat在实际使用过程中内存>300M,甚至15GB的情况浣熊都遇到过, 内存超过300M几乎经常遇到,基本都是因为客户没有按照吩咐的去做导致的; 15GB的那次有点意外和惊喜, 客户在自己的日志文件里打了大量的二进制文件( 后来知道真相的我眼泪掉下来... ), 大量的二进制文件触发了10MB规则,还好吃掉15GB内存后filebeat因OOM退出了,没有带来严重的损失.

那怎么样才能避免以上内存灾难呢?划重点了,快快拿出小本本记录:

(1)每个日志生产环境生产的日志大小,爆发量都不一样, 要根据自己的日志特点设定合适的spool_size值;什么叫合适,至少能避免内存>200MB的灾难;

(2)在不知道日志实际情况(单条大小,爆发量), 务必把spool_size设置上,建议128或者256;

最后分享张实践图片:

        单条日志为45KB, spool_size为2048的内存开销,陡坡下是spool_size调整为128的效果.



相关实践学习
【涂鸦即艺术】基于云应用开发平台CAP部署AI实时生图绘板
【涂鸦即艺术】基于云应用开发平台CAP部署AI实时生图绘板
目录
相关文章
|
16天前
|
传感器 数据采集 监控
Python生成器与迭代器:从内存优化到协程调度的深度实践
简介:本文深入解析Python迭代器与生成器的原理及应用,涵盖内存优化技巧、底层协议实现、生成器通信机制及异步编程场景。通过实例讲解如何高效处理大文件、构建数据流水线,并对比不同迭代方式的性能特点,助你编写低内存、高效率的Python代码。
79 0
|
1月前
|
边缘计算 算法 Java
Java 绿色计算与性能优化:从内存管理到能耗降低的全方位优化策略与实践技巧
本文探讨了Java绿色计算与性能优化的技术方案和应用实例。文章从JVM调优(包括垃圾回收器选择、内存管理和并发优化)、代码优化(数据结构选择、对象创建和I/O操作优化)等方面提出优化策略,并结合电商平台、社交平台和智能工厂的实际案例,展示了通过Java新特性提升性能、降低能耗的显著效果。最终指出,综合运用这些优化方法不仅能提高系统性能,还能实现绿色计算目标,为企业节省成本并符合环保要求。
63 0
|
2月前
|
SQL 缓存 安全
深度理解 Java 内存模型:从并发基石到实践应用
本文深入解析 Java 内存模型(JMM),涵盖其在并发编程中的核心作用与实践应用。内容包括 JMM 解决的可见性、原子性和有序性问题,线程与内存的交互机制,volatile、synchronized 和 happens-before 等关键机制的使用,以及在单例模式、线程通信等场景中的实战案例。同时,还介绍了常见并发 Bug 的排查与解决方案,帮助开发者写出高效、线程安全的 Java 程序。
124 0
|
10月前
|
存储 缓存 安全
Java内存模型深度解析:从理论到实践####
【10月更文挑战第21天】 本文深入探讨了Java内存模型(JMM)的核心概念与底层机制,通过剖析其设计原理、内存可见性问题及其解决方案,结合具体代码示例,帮助读者构建对JMM的全面理解。不同于传统的摘要概述,我们将直接以故事化手法引入,让读者在轻松的情境中领略JMM的精髓。 ####
127 6
|
监控 算法 Java
Java内存管理:垃圾收集器的工作原理与调优实践
在Java的世界里,内存管理是一块神秘的领域。它像是一位默默无闻的守护者,确保程序顺畅运行而不被无用对象所困扰。本文将带你一探究竟,了解垃圾收集器如何在后台无声地工作,以及如何通过调优来提升系统性能。让我们一起走进Java内存管理的迷宫,寻找提高应用性能的秘诀。
|
安全 Java 开发者
Java 内存模型解析与实践
在Java的世界中,理解内存模型对于编写高效、线程安全的代码至关重要。本文将深入探讨Java内存模型的核心概念,并通过实例分析其对并发编程的影响,旨在为读者提供一套实用的策略和思考方式来优化多线程应用的性能与安全性。
128 0
|
9月前
|
安全 Java 程序员
Java内存模型的深入理解与实践
本文旨在深入探讨Java内存模型(JMM)的核心概念,包括原子性、可见性和有序性,并通过实例代码分析这些特性在实际编程中的应用。我们将从理论到实践,逐步揭示JMM在多线程编程中的重要性和复杂性,帮助读者构建更加健壮的并发程序。
|
10月前
|
存储 监控 Java
深入理解计算机内存管理:优化策略与实践
深入理解计算机内存管理:优化策略与实践
|
数据采集 Rust 安全
Rust在网络爬虫中的应用与实践:探索内存安全与并发处理的奥秘
【8月更文挑战第31天】网络爬虫是自动化程序,用于从互联网抓取数据。随着互联网的发展,构建高效、安全的爬虫成为热点。Rust语言凭借内存安全和高性能特点,在此领域展现出巨大潜力。本文探讨Rust如何通过所有权、借用及生命周期机制保障内存安全;利用`async/await`模型和`tokio`运行时处理并发请求;借助WebAssembly技术处理动态内容;并使用`reqwest`和`js-sys`库解析CSS和JavaScript,确保代码的安全性和可维护性。未来,Rust将在网络爬虫领域扮演更重要角色。
215 1
|
11月前
|
SQL 安全 算法
ChatGPT高效提问—prompt实践(漏洞风险分析-重构建议-识别内存泄漏)
ChatGPT高效提问—prompt实践(漏洞风险分析-重构建议-识别内存泄漏)
159 0