ubuntu12.04下使用android emulator,启用kvm加速,模拟i8254定时器的代码比较旧,对应于qemu0.14或者之前的版本,这时还没有QOM(qemu object model)模型,虚拟设备的代码是比较简单的。
玩虚拟设备之前,首先得搞明白真实设备怎么玩,有篇文档:http://blog.csdn.net/u013007900/article/details/50408903,看不太明白就再看看计组和哈工大出版的C语言测控,以前上课用的这个。
8254使用的端口时0x40~0x43,共计4个8bit端口,输入时钟频率1193kHZ,使用IRQ0,对应中断向量表中的INT 8。怎么对应,看http://www.360doc.com/content/09/1017/08/128139_7395798.shtml和http://blog.csdn.net/duguteng/article/details/7552774。
8259主片的IRQ0~7对应INT 8~INT F,从片的IRQ8~IRQ15对应INT 70~INT 77。
有份以前上C语言测控时写的代码,使用了8254的,输入采样周期(in ms)和采样次数,每次采样时打印一个'8'。
注意定时器的最大周期比较短,大约55ms,所以需要使用软件方式扩大定时器的周期,注意周期不是10ms的倍数时的特殊处理。
定时器0工作于模式3,方波发生器。用学硬件的话来说,就是自动重装定时器;用学软件的话来说,就是周期定时器,不是oneshot的。
/* C语言测控程序设计
* 2012年3月29日
* 系统XP sp3,编译器:TC3.0,编辑器:VIM7.3
* */
#include <stdio.h>
#include <dos.h>
#include <graphics.h>
#include <math.h>
#include <string.h>
/*参数*/
float gfT; //采样周期
long glN; //采样次数
int giFlag; //标记时间到
long glUserCnt; //已采样次数
int giTimerN; //采样周期除以10ms
int giTimerSmallValue; //采样周期模10ms后,对应的定时器初值
int giTimerCnt; //定时器中断次数
void LoadConfig(void); //读取配置文件
void interrupt (*OldIsr08)(void); //原先的中断函数指针
void interrupt MyIsr08(void); //自定义的中断函数
void TimerInit(void); //定时器初始化函数
void TimerExit(void); //定时器恢复函数
void UserTimerIsr(void); //每个采样周期都会调用的函数
int main()
{
/*读取配置*/
LoadConfig();
/*初始化*/
TimerInit();
while((glUserCnt < glN) || (glN == 0))
{
if(kbhit()) //特定按键退出
{
if(getch() == ' ')
break;
}
if(giFlag)
{
giFlag = 0;
putchar('8');
}
}
/*恢复定时器和dos界面*/
TimerExit();
printf("\nthe times of interrupt is: %ld\n",glUserCnt);
getch();
return 0;
}
/*定时器中断函数,每到用户设定的时间,调用一次UserTimerIsr()*/
void interrupt MyIsr08(void)
{
giTimerCnt++;
if(giTimerN == 0) //采样周期小于10ms的情况
{
giTimerCnt = 0;
UserTimerIsr();
outportb(0x20, 0x20); //清除中断标志位,可以看8259相关的资料
return;
}
if((giTimerSmallValue == 0) && (giTimerCnt == giTimerN)) //采样周期是10ms的倍数的情况
{
giTimerCnt = 0;
UserTimerIsr();
outportb(0x20, 0x20);
return;
}
if((giTimerSmallValue != 0) && (giTimerN != 0)) //采样周期大于10ms,且不是10ms倍数的情况
{
if(giTimerCnt == 1)
{
disable();
outportb(0x43, 0x36);
outportb(0x40, 0x9d);
outportb(0x40, 0x2e);
enable();
}
if(giTimerCnt == (giTimerN + 1))
{
giTimerCnt = 0;
disable();
outportb(0x43, 0x36);
outportb(0x40, giTimerSmallValue & 0xff);
outportb(0x40, (giTimerSmallValue >> 8) & 0xff);
enable();
UserTimerIsr();
}
outportb(0x20, 0x20);
return;
}
outportb(0x20, 0x20);
}
/*初始化定时器*/
void TimerInit(void)
{
giTimerN = (int)(gfT / 10);
giTimerSmallValue = (int)((gfT - giTimerN * 10) * 1193); // 输入时钟频率1193kHZ
disable();
OldIsr08 = getvect(0x08);
if(giTimerSmallValue)
{
outportb(0x43, 0x36);
outportb(0x40, giTimerSmallValue & 0xff);
outportb(0x40, (giTimerSmallValue >> 8) & 0xff);
}
else
{
outportb(0x43, 0x36);
outportb(0x40, 0x9d);
outportb(0x40, 0x2e);
}
setvect(0x08, MyIsr08);
enable();
}
/*恢复定时器原先的服务函数和周期*/
void TimerExit(void)
{
disable();
outportb(0x43, 0x36);
outportb(0x40, 0x00);
outportb(0x40, 0x00);
setvect(0x08, OldIsr08);
enable();
}
/*每个采样周期都会调用的函数*/
void UserTimerIsr(void)
{
glUserCnt++;
giFlag = 1;
}
/*获取配置信息*/
void LoadConfig(void)
{
printf("input T and N\n");
scanf("%f %ld", &gfT, &glN);
while(getchar() != 10);
if( gfT <= 0 || glN < 0)
{
printf("error, try again\n");
LoadConfig();
}
}
真的看完了,现在开始看模拟的。
8254的初始化是在pc_init1中执行的,设置iobase为0x40,IRQ为0,INT 8:
pit = pit_init(0x40, i8259[0]);
8254是有三个timer的,只用到了channel 0的timer。
qemu有自己的定时器,输入时钟是1G,对应1ns。8254的输入时钟是1193kHZ,如何模拟的呢?
根据8254的设置,计算出来下一个中断到临的tick次数,在根据8254和qemu timer频率的不同,对tick进行转换,然后设置qemu timer的定时设置,当qemu timer超时时,callback函数就是8254的中断处理函数pit_irq_timer。在中断函数中,再进行一些其它的处理,如重新装载之类的。
PITState *pit_init(int base, qemu_irq irq)
{
PITState *pit = &pit_state;
PITChannelState *s;
s = &pit->channels[0];
/* the timer 0 is connected to an IRQ */
s->irq_timer = timer_new(QEMU_CLOCK_VIRTUAL, SCALE_NS, pit_irq_timer, s);
s->irq = irq;
register_savevm(NULL, "i8254", base, 1, pit_save, pit_load, pit);
qemu_register_reset(pit_reset, 0, pit);
register_ioport_write(base, 4, 1, pit_ioport_write, pit);
register_ioport_read(base, 3, 1, pit_ioport_read, pit);
pit_reset(pit);
return pit;
}
qemu_register_reset是用链表保存一些复位函数的:
void qemu_register_reset(QEMUResetHandler *func, int order, void *opaque)
{
QEMUResetEntry **pre, *re;
pre = &first_reset_entry;
while (*pre != NULL && (*pre)->order >= order) {
pre = &(*pre)->next;
}
re = g_malloc0(sizeof(QEMUResetEntry));
re->func = func;
re->opaque = opaque;
re->order = order;
re->next = NULL;
*pre = re;
}
当然pit_init最后也调用了pit_reset函数对寄存器进行复位,将mode设置为3,设置gate,计数值归零:
static void pit_reset(void *opaque)
{
PITState *pit = opaque;
PITChannelState *s;
int i;
for(i = 0;i < 3; i++) {
s = &pit->channels[i];
s->mode = 3;
s->gate = (i != 2);
pit_load_count(s, 0);
}
}
这两行设置了寄存器的读写函数,注意这里是PMIO方式,不是MMIO方式的寄存器。0x40~0x43的写函数设置为pit_ioport_write;0x40~0x42的读函数设置为pit_ioport_read:
register_ioport_write(base, 4, 1, pit_ioport_write, pit); register_ioport_read(base, 3, 1, pit_ioport_read, pit);
写函数,看懂寄存器的使用后,这个函数还是比较简单的:
static void pit_ioport_write(void *opaque, uint32_t addr, uint32_t val)
{
PITState *pit = opaque;
int channel, access;
PITChannelState *s;
addr &= 3;
if (addr == 3) {
channel = val >> 6;
if (channel == 3) {
/* read back command */
for(channel = 0; channel < 3; channel++) {
s = &pit->channels[channel];
if (val & (2 << channel)) {
if (!(val & 0x20)) {
pit_latch_count(s);
}
if (!(val & 0x10) && !s->status_latched) {
/* status latch */
/* XXX: add BCD and null count */
s->status = (pit_get_out1(s, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) 7) |
(s->rw_mode << 4) |
(s->mode << 1) |
s->bcd;
s->status_latched = 1;
}
}
}
} else {
s = &pit->channels[channel];
access = (val >> 4) & 3;
if (access == 0) {
pit_latch_count(s);
} else {
s->rw_mode = access;
s->read_state = access;
s->write_state = access;
s->mode = (val >> 1) & 7;
s->bcd = val & 1;
/* XXX: update irq timer ? */
}
}
} else {
s = &pit->channels[addr];
switch(s->write_state) {
default:
case RW_STATE_LSB:
pit_load_count(s, val);
break;
case RW_STATE_MSB:
pit_load_count(s, val << 8);
break;
case RW_STATE_WORD0:
s->write_latch = val;
s->write_state = RW_STATE_WORD1;
break;
case RW_STATE_WORD1:
pit_load_count(s, s->write_latch | (val << 8));
s->write_state = RW_STATE_WORD0;
break;
}
}
}
pit_latch_count用于锁存当前的计数值:
static void pit_latch_count(PITChannelState *s)
{
if (!s->count_latched) {
s->latched_count = pit_get_count(s);
s->count_latched = s->rw_mode;
}
}
pit_load_count用于装载计数值,count_load_time是装载时tick的值(tick++ in every ns);count是8254的周期,8254自己的计数值会按照1193kHZ的频率递减的。注意和count_load_time单位的不同,以及后续单位的转换。最后调用pit_irq_timer_update,对qemu timer进行更新。
static inline void pit_load_count(PITChannelState *s, int val)
{
if (val == 0)
val = 0x10000;
s->count_load_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
s->count = val;
pit_irq_timer_update(s, s->count_load_time);
}
pit_irq_timer_update函数干两件事:
1、计算irq_level,就是比较tick的值和设定的值,满足条件时就会qemu_set_irq触发中断请求
2、计算expire_time,并且调用timer_mod更新qemu timer,让qemu timer在8254下一个需要产生中断的时候产生timeout,并调用callback,也就是8254的中断函数
static void pit_irq_timer_update(PITChannelState *s, int64_t current_time)
{
int64_t expire_time;
int irq_level;
if (!s->irq_timer)
return;
expire_time = pit_get_next_transition_time(s, current_time);
irq_level = pit_get_out1(s, current_time);
qemu_set_irq(s->irq, irq_level);
#ifdef DEBUG_PIT
printf("irq_level=%d next_delay=%f\n",
irq_level,
(double)(expire_time - current_time) / get_ticks_per_sec());
#endif
s->next_transition_time = expire_time;
if (expire_time != -1)
timer_mod(s->irq_timer, expire_time);
else
timer_del(s->irq_timer);
}
8254的中断函数,也就是qemu timer的callback函数,也调用了pit_irq_timer_update:
static void pit_irq_timer(void *opaque)
{
PITChannelState *s = opaque;
pit_irq_timer_update(s, s->next_transition_time);
}
static uint32_t pit_ioport_read(void *opaque, uint32_t addr)
{
PITState *pit = opaque;
int ret, count;
PITChannelState *s;
addr &= 3;
s = &pit->channels[addr];
if (s->status_latched) {
s->status_latched = 0;
ret = s->status;
} else if (s->count_latched) {
switch(s->count_latched) {
default:
case RW_STATE_LSB:
ret = s->latched_count & 0xff;
s->count_latched = 0;
break;
case RW_STATE_MSB:
ret = s->latched_count >> 8;
s->count_latched = 0;
break;
case RW_STATE_WORD0:
ret = s->latched_count & 0xff;
s->count_latched = RW_STATE_MSB;
break;
}
} else {
switch(s->read_state) {
default:
case RW_STATE_LSB:
count = pit_get_count(s);
ret = count & 0xff;
break;
case RW_STATE_MSB:
count = pit_get_count(s);
ret = (count >> 8) & 0xff;
break;
case RW_STATE_WORD0:
count = pit_get_count(s);
ret = count & 0xff;
s->read_state = RW_STATE_WORD1;
break;
case RW_STATE_WORD1:
count = pit_get_count(s);
ret = (count >> 8) & 0xff;
s->read_state = RW_STATE_WORD0;
break;
}
}
return ret;
}
当kvm执行到PMIO的操作时,会退出,然后调用kvm_handle_io:
case KVM_EXIT_IO:
dprintf("handle_io\n");
ret = kvm_handle_io(cpu, run->io.port,
(uint8_t *)run + run->io.data_offset,
run->io.direction,
run->io.size,
run->io.count);
break;
static int kvm_handle_io(CPUState *cpu, uint16_t port, void *data,
int direction, int size, uint32_t count)
{
int i;
uint8_t *ptr = data;
for (i = 0; i < count; i++) {
if (direction == KVM_EXIT_IO_IN) {
switch (size) {
case 1:
stb_p(ptr, cpu_inb(port));
break;
case 2:
stw_p(ptr, cpu_inw(port));
break;
case 4:
stl_p(ptr, cpu_inl(port));
break;
}
} else {
switch (size) {
case 1:
cpu_outb(port, ldub_p(ptr));
break;
case 2:
cpu_outw(port, lduw_p(ptr));
break;
case 4:
cpu_outl(port, ldl_p(ptr));
break;
}
}
ptr += size;
}
return 1;
}
以8bit读为例子:
uint8_t cpu_inb(pio_addr_t addr)
{
uint8_t val;
val = ioport_read(0, addr);
LOG_IOPORT("inb : %04"FMT_pioaddr" %02"PRIx8"\n", addr, val);
return val;
}
static uint32_t ioport_read(int index, uint32_t address)
{
static IOPortReadFunc * const default_func[3] = {
default_ioport_readb,
default_ioport_readw,
default_ioport_readl
};
IOPortReadFunc *func = ioport_read_table[index][address];
if (!func)
func = default_func[index];
return func(ioport_opaque[address], address);
}
int register_ioport_read(pio_addr_t start, int length, int size,
IOPortReadFunc *func, void *opaque)
{
pio_addr_t i;
int bsize;
if (ioport_bsize(size, &bsize)) {
hw_error("register_ioport_read: invalid size");
return -1;
}
for(i = start; i < start + length; i += size) {
ioport_read_table[bsize][i] = func;
if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
hw_error("register_ioport_read: invalid opaque");
ioport_opaque[i] = opaque;
}
return 0;
}
pit_save,pit_load,register_savevm用于快照和恢复的,可以不看。
现在qemu的8254都是使用了QOM模型了,这个模型太TMD的复杂了。另外hw/i386/kvm/timer/i8254.c中提供了kvm-pit,使用kvm提供的内核态的8254的模拟,中断的处理和IO的读写都在内核态,不需要退出kvm了,速度要更快些。类似的,8259之类的也有kvm内核态的实现,所以说android emulator的性能还是有提升空间的。