TensorFlow博客翻译——用TensorFlow在云端进行机器学习

简介: 原文地址Machine Learning in the Cloud, with TensorFlowWednesday, March 23, 2016Posted by Slaven Bilac, Software Engineer, Google Re...

原文地址



用TensorFlow在云端进行机器学习


At Google, researchers collaborate closely with product teams, applying the latest advances in Machine Learning to existing products and services - such as  speech recognition in the Google app , search in Google Photos  and the  Smart Reply feature in Inbox by Gmail  - in order to make them more useful. A growing number of Google products are using  TensorFlow , our open source Machine Learning system, to tackle ML challenges and we would like to enable others do the same.

在Google,研究人员和产品团队密切协作,把最新的机器学习的进展融入到了现有的产品和服务中,比如:Google应用中的语音识别、Google照片的查找和Gmail收件箱的智能回复特征,这都是为了让这些产品和服务更加的实用。Google产品中使用TensorFlow(我们开源的机器学习系统)的数量正在增加,同时为了掌控机器学习的挑战,我们将确保更多的产品使用TensorFlow.

Today, at  GCP NEXT 2016 , we  announced the alpha release  of  Cloud Machine Learning , a framework for building and training custom models to be used in intelligent applications. 
今天,在GCP NEXT 2016上,我们宣布正式发布云机器学习的alpha版本,它是一个框架,这个框架将用来构建和训练客户模型,这些客户模型将应用在人工智能应用程序中。
Machine Learning projects can come in many sizes, and as we’ve seen with our open source offering  TensorFlow , projects often need to scale up. Some small tasks are best handled with a local solution running on one’s desktop, while large scale applications require both the scale and dependability of a hosted solution. Google  Cloud Machine Learning  aims to support the full range and provide a seamless transition from local to cloud environment.

机器学习项目可以是各种大小的,就像我们已经看到的我们提供的开源的TensorFlow,项目通常需要去向上扩展。一些运行在个人的电脑上的本地解决方案的小项目是最容易掌握的;与此同时,大规模的应用需要较大的规模和hosted依赖的解决方案。Google的云机器学习,目标是为了支持全领域的解决方案,并且提供一个从本地到云环境的无缝过度。

The  Cloud Machine Learning  offering allows users to run custom distributed learning algorithms based on  TensorFlow . In addition to the  deep learning  capabilities that power  Cloud Translate API , Cloud Vision API , and  Cloud Speech API , we provide easy-to-adopt samples for common tasks like linear regression/classification with very fast convergence properties (based on the  SDCA algorithm) and building a custom image classification model with few hundred training examples (based on the  DeCAF  algorithm).

云机器学习提供了允许用户在TensorFlow的基础上运行客户的分布式学习算法的功能。在深度学习的容量之上,增强了Cloud Translate API,Cloud Vision API, and Cloud Speech API,我们提供了一些易于用于 常用任务中的例子,比如:采用非常快的趋于一致属性的linear regression/classification(基于SDCA算法)和用几百个训练例子构建一个客户图像分类模型
(基于DeCAF算法)。

We are excited to bring the best of  Google Research  to  Google Cloud Platform . Learn more about this release and more from GCP Next 2016 on the  Google Cloud Platform blog .
我们非常兴奋的把Google研究的最好的内容带到了Google云平台上。希望更多的了解这次发布和GCP Next 2016更多的内容,可以到Google云平台博客。
目录
相关文章
|
2月前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
116 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
2月前
|
机器学习/深度学习 TensorFlow API
机器学习实战:TensorFlow在图像识别中的应用探索
【10月更文挑战第28天】随着深度学习技术的发展,图像识别取得了显著进步。TensorFlow作为Google开源的机器学习框架,凭借其强大的功能和灵活的API,在图像识别任务中广泛应用。本文通过实战案例,探讨TensorFlow在图像识别中的优势与挑战,展示如何使用TensorFlow构建和训练卷积神经网络(CNN),并评估模型的性能。尽管面临学习曲线和资源消耗等挑战,TensorFlow仍展现出广阔的应用前景。
84 5
|
2月前
|
机器学习/深度学习 人工智能 TensorFlow
基于TensorFlow的深度学习模型训练与优化实战
基于TensorFlow的深度学习模型训练与优化实战
118 0
|
4月前
|
机器学习/深度学习 算法 TensorFlow
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
交通标志识别系统。本系统使用Python作为主要编程语言,在交通标志图像识别功能实现中,基于TensorFlow搭建卷积神经网络算法模型,通过对收集到的58种常见的交通标志图像作为数据集,进行迭代训练最后得到一个识别精度较高的模型文件,然后保存为本地的h5格式文件。再使用Django开发Web网页端操作界面,实现用户上传一张交通标志图片,识别其名称。
171 6
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
|
3月前
|
机器学习/深度学习 人工智能 算法
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
玉米病害识别系统,本系统使用Python作为主要开发语言,通过收集了8种常见的玉米叶部病害图片数据集('矮花叶病', '健康', '灰斑病一般', '灰斑病严重', '锈病一般', '锈病严重', '叶斑病一般', '叶斑病严重'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。再使用Django搭建Web网页操作平台,实现用户上传一张玉米病害图片识别其名称。
85 0
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
|
5月前
|
持续交付 测试技术 jenkins
JSF 邂逅持续集成,紧跟技术热点潮流,开启高效开发之旅,引发开发者强烈情感共鸣
【8月更文挑战第31天】在快速发展的软件开发领域,JavaServer Faces(JSF)这一强大的Java Web应用框架与持续集成(CI)结合,可显著提升开发效率及软件质量。持续集成通过频繁的代码集成及自动化构建测试,实现快速反馈、高质量代码、加强团队协作及简化部署流程。以Jenkins为例,配合Maven或Gradle,可轻松搭建JSF项目的CI环境,通过JUnit和Selenium编写自动化测试,确保每次构建的稳定性和正确性。
71 0
|
5月前
|
缓存 开发者 测试技术
跨平台应用开发必备秘籍:运用 Uno Platform 打造高性能与优雅设计兼备的多平台应用,全面解析从代码共享到最佳实践的每一个细节
【8月更文挑战第31天】Uno Platform 是一种强大的工具,允许开发者使用 C# 和 XAML 构建跨平台应用。本文探讨了 Uno Platform 中实现跨平台应用的最佳实践,包括代码共享、平台特定功能、性能优化及测试等方面。通过共享代码、采用 MVVM 模式、使用条件编译指令以及优化性能,开发者可以高效构建高质量应用。Uno Platform 支持多种测试方法,确保应用在各平台上的稳定性和可靠性。这使得 Uno Platform 成为个人项目和企业应用的理想选择。
90 0
|
5月前
|
API UED 开发者
如何在Uno Platform中轻松实现流畅动画效果——从基础到优化,全方位打造用户友好的动态交互体验!
【8月更文挑战第31天】在开发跨平台应用时,确保用户界面流畅且具吸引力至关重要。Uno Platform 作为多端统一的开发框架,不仅支持跨系统应用开发,还能通过优化实现流畅动画,增强用户体验。本文探讨了Uno Platform中实现流畅动画的多个方面,包括动画基础、性能优化、实践技巧及问题排查,帮助开发者掌握具体优化策略,提升应用质量与用户满意度。通过合理利用故事板、减少布局复杂性、使用硬件加速等技术,结合异步方法与预设缓存技巧,开发者能够创建美观且流畅的动画效果。
100 0
|
5月前
|
UED 存储 数据管理
深度解析 Uno Platform 离线状态处理技巧:从网络检测到本地存储同步,全方位提升跨平台应用在无网环境下的用户体验与数据管理策略
【8月更文挑战第31天】处理离线状态下的用户体验是现代应用开发的关键。本文通过在线笔记应用案例,介绍如何使用 Uno Platform 优雅地应对离线状态。首先,利用 `NetworkInformation` 类检测网络状态;其次,使用 SQLite 实现离线存储;然后,在网络恢复时同步数据;最后,通过 UI 反馈提升用户体验。
121 0
|
5月前
|
开发者 算法 虚拟化
惊爆!Uno Platform 调试与性能分析终极攻略,从工具运用到代码优化,带你攻克开发难题成就完美应用
【8月更文挑战第31天】在 Uno Platform 中,调试可通过 Visual Studio 设置断点和逐步执行代码实现,同时浏览器开发者工具有助于 Web 版本调试。性能分析则利用 Visual Studio 的性能分析器检查 CPU 和内存使用情况,还可通过记录时间戳进行简单分析。优化性能涉及代码逻辑优化、资源管理和用户界面简化,综合利用平台提供的工具和技术,确保应用高效稳定运行。
116 0