DataSet API和DataFrame两者结合起来,DataSet中许多的API模仿了RDD的API,实现不太一样,但是基于RDD的代码很容易移植过来。
spark未来基本是要在DataSet上扩展了,因为spark基于spark core关注的东西很多,整合内部代码是必然的。
1、加载文件
val rdd = sparkContext.textFile("./data.txt")
val ds = sparkSession.read.text("./data.txt")
2、计算总数
rdd.count()
ds.count()
3、wordcount实例
val wordsRDD = rdd.flatMap(value => value.split("\\s+"))
val wordsPairs = wordsRDD.map(word => (word,1))
val wordCount = wordsPairs.reduceByKey(_+_)
import sparkSession.implicits._
val wordsDs = ds.flatMap(value => value.split("\\s+"))
val wordsPairDs = wordsDs.groupByKey(value => value)
val wordCounts = wordsPairDs.count()
4、缓存
rdd.cache()
ds.cache()
5、过滤
val filterRDD = wordsRDD.filter(value => value=="hello")
val filterDs = wordsDs.filter(value => value = "hello")
6、map partition
val mapPartitionsRDD = rdd.mapPartitions(iterator => List(iterator.count(value=>true)).iterator)
val mapPartitionsDs = ds.mapPartitions(iterator => List(iterator.count(value=>true)).iterator)
7 、reduceByKey
val reduceCountByRDD = wordsPair.reduceByKey(_+_)
val reduceCountByDs = wordsPairDs.mapGroups((key,values) =>(key,values.length))
8、RDD和 DataSet互换
val dsToRDD = ds.rdd
val rddStringToRowRDD = rdd.map(value => Row(value))
val dfschema = StructType(Array(StructField("value",StringType)))
val rddToDF = sparkSession.createDataFrame(rddStringToRowRDD,dfschema)
val rDDToDataSet = rddToDF.as[String]
9、double
val doubleRDD = sparkContext.makeRDD(List(1.0,5.0,8.9,9.0))
val rddSum =doubleRDD.sum()
val rddMean = doubleRDD.mean()
val rowRDD = doubleRDD.map(value => Row.fromSeq(List(value)))
val schema = StructType(Array(StructField("value",DoubleType)))
val doubleDS = sparkSession.createDataFrame(rowRDD,schema)
import org.apache.spark.sql.functions._
doubleDS.agg(sum("value"))
doubleDS.agg(mean("value"))
10、reduce
val rddReduce = doubleRDD.reduce((a,b) => a +b)
val dsReduce = doubleDS.reduce((row1,row2) =>Row(row1.getDouble(0) + row2.getDouble(0)))
code
import org.apache.spark.sql.types.{DoubleType, StringType, StructField, StructType}
import org.apache.spark.sql.{Row, SparkSession}
object RDDToDataSet {
def main(args: Array[String]) {
val sparkSession = SparkSession.builder.master("local")
.appName("example")
.getOrCreate()
val sparkContext = sparkSession.sparkContext
//read data from text file
val rdd = sparkContext.textFile("src/main/resources/data.txt")
val ds = sparkSession.read.text("src/main/resources/data.txt")
// do count
println("count ")
println(rdd.count())
println(ds.count())
// wordcount
println(" wordcount ")
val wordsRDD = rdd.flatMap(value => value.split("\\s+"))
val wordsPair = wordsRDD.map(word => (word,1))
val wordCount = wordsPair.reduceByKey(_+_)
println(wordCount.collect.toList)
import sparkSession.implicits._
val wordsDs = ds.flatMap(value => value.split("\\s+"))
val wordsPairDs = wordsDs.groupByKey(value => value)
val wordCountDs = wordsPairDs.count
wordCountDs.show()
//cache
rdd.cache()
ds.cache()
//filter
val filteredRDD = wordsRDD.filter(value => value =="hello")
println(filteredRDD.collect().toList)
val filteredDS = wordsDs.filter(value => value =="hello")
filteredDS.show()
//map partitions
val mapPartitionsRDD = rdd.mapPartitions(iterator =>
List(iterator.count(value => true)).iterator)
println(s" the count each partition is ${mapPartitionsRDD.collect().toList}")
val mapPartitionsDs = ds.mapPartitions(iterator =>
List(iterator.count(value => true)).iterator)
mapPartitionsDs.show()
//converting to each other
val dsToRDD = ds.rdd
println(dsToRDD.collect())
val rddStringToRowRDD = rdd.map(value => Row(value))
val dfschema = StructType(Array(StructField("value",StringType)))
val rddToDF = sparkSession.createDataFrame(rddStringToRowRDD,dfschema)
val rDDToDataSet = rddToDF.as[String]
rDDToDataSet.show()
// double based operation
val doubleRDD = sparkContext.makeRDD(List(1.0,5.0,8.9,9.0))
val rddSum =doubleRDD.sum()
val rddMean = doubleRDD.mean()
println(s"sum is $rddSum")
println(s"mean is $rddMean")
val rowRDD = doubleRDD.map(value => Row.fromSeq(List(value)))
val schema = StructType(Array(StructField("value",DoubleType)))
val doubleDS = sparkSession.createDataFrame(rowRDD,schema)
import org.apache.spark.sql.functions._
doubleDS.agg(sum("value")).show()
doubleDS.agg(mean("value")).show()
//reduceByKey API
val reduceCountByRDD = wordsPair.reduceByKey(_+_)
val reduceCountByDs = wordsPairDs.mapGroups((key,values) =>(key,values.length))
println(reduceCountByRDD.collect().toList)
println(reduceCountByDs.collect().toList)
//reduce function
val rddReduce = doubleRDD.reduce((a,b) => a +b)
val dsReduce = doubleDS.reduce((row1,row2) =>
Row(row1.getDouble(0) + row2.getDouble(0)))
println("rdd reduce is " +rddReduce +" dataset reduce "+dsReduce)
}
}