概率图模型

简介: 概率图模型:HMM、MEMM、CRF

What is PGM?
一类用图的形式表示随机变量之间条件依赖关系的概率模型,是概率论与图论的结合。

Why we need it?
减少后验概率计算所需的参数估计工作量
与专家和领域知识结合,简化系统实体之间关系

具体请参看我在淘宝移动平台的讲义。

目录
相关文章
|
8月前
|
机器学习/深度学习 自然语言处理 算法
【模式识别】探秘判别奥秘:Fisher线性判别算法的解密与实战
【模式识别】探秘判别奥秘:Fisher线性判别算法的解密与实战
170 0
|
机器学习/深度学习 传感器 资源调度
【图像去噪】基于隐马尔可夫模型实现图像去噪处理附matlab代码
【图像去噪】基于隐马尔可夫模型实现图像去噪处理附matlab代码
|
算法
基础算法:离散化的基本应用
基础算法:离散化的基本应用
117 0
15 贝叶斯方法
15 贝叶斯方法
57 0
|
机器学习/深度学习 数据挖掘 网络架构
使用多个神经网络进行细菌分类(Matlab代码实现)
使用多个神经网络进行细菌分类(Matlab代码实现)
|
机器学习/深度学习 算法 决策智能
【NeurIPS 2019】最大熵的蒙特卡洛规划算法
【NeurIPS 2019】最大熵的蒙特卡洛规划算法
125 0
|
机器学习/深度学习 存储 人工智能
什么是概率图模型?
概率图模型是机器学习的一个分支,重点研究如何利用概率分布描述真实世界并对其做出有价值的预测。本教程对图模型的讨论将分为三个主要部分:表示(如何描述模型)、推理(如何向模型提问)和学习(如何用现实数据训练模型)。这三个主题相辅相成,从零开始一步一步带你深入理解最前沿的因果AI理论。
223 0
什么是概率图模型?
|
算法
基于特征选择的二元蜻蜓算法(Matlab代码实现)
基于特征选择的二元蜻蜓算法(Matlab代码实现)
119 0
|
编解码 自然语言处理 语音技术
概率图模型在真实世界中的应用
概率图模型有许多不同的实际应用。 为了激起大家对概率图模型的兴趣,也为了让大家能够对概率图模型有感性的认知,本章会分享概率图模型的诸多实际应用案例。
271 0
概率图模型在真实世界中的应用
|
算法 C++ 容器
基础算法-离散化
1. 离散化简介 离散化,把无限空间中有限的个体映射到有限的空间中去,以此提高算法的时空效率。通俗的说,离散化是在不改变数据相对大小的条件下,对数据进行相应的缩小。 离散化本质上可以看成是一种哈希,其保证数据在哈希以后仍然保持原来的全/偏序关系。 当有些数据因为本身很大或者类型不支持,自身无法作为数组的下标来方便地处理,而影响最终结果的只有元素之间的相对大小关系时,我们可以将原来的数据按照从大到小编号来处理问题,即离散化。 本文针对 整数、有序数组 进行离散化。