DockOne微信分享(一二六):Kubernetes在微服务化游戏中的探索实践

本文涉及的产品
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
注册配置 MSE Nacos/ZooKeeper,118元/月
云原生网关 MSE Higress,422元/月
简介: 本文讲的是DockOne微信分享(一二六):Kubernetes在微服务化游戏中的探索实践【编者的话】随着Kubernetes的持续火热,那在线游戏领域又将如何使用,又将碰到哪些问题,以及带来哪些价值? 本次分享将为大家介绍微服务化架构游戏领域中,Kubernetes支撑技术方案选型,功能优化以及实践过程中的一些思考。
本文讲的是DockOne微信分享(一二六):Kubernetes在微服务化游戏中的探索实践【编者的话】随着Kubernetes的持续火热,那在线游戏领域又将如何使用,又将碰到哪些问题,以及带来哪些价值? 本次分享将为大家介绍微服务化架构游戏领域中,Kubernetes支撑技术方案选型,功能优化以及实践过程中的一些思考。

【3 天烧脑式容器存储网络训练营 | 深圳站】本次培训以容器存储和网络为主题,包括:Docker Plugin、Docker storage driver、Docker Volume Pulgin、Kubernetes Storage机制、容器网络实现原理和模型、Docker网络实现、网络插件、Calico、Contiv Netplugin、开源企业级镜像仓库Harbor原理及实现等。

微服务化游戏容器化探索

随着Docker技术在近几年的快速发展,国内外掀起了一股容器之风。而我们也在这时,开启了游戏容器化的探索之路。最开始在Docker容器的应用上,还是以VM的模式去部署,毕竟游戏是非常复杂的应用,没有统一的模式。除此之外,对于一项全新技术的应用,大家都很谨慎,一步一步地去实践。

而在近一两年,部分游戏的架构也逐渐往微服务化方向转变,以下是一款游戏的架构:游戏的逻辑层按不同的服务划分为不同的模块,每个模块都是高内聚低耦合,之间的通信通过消息队列(或者API)来实现。模块的版本通过CI/CD,实现镜像标准交付,快速部署。在这些模块中,大部分是无状态服务,很容易实现弹性伸缩。
图片1.png

我们再来看另一款微服务化游戏的架构:也是按功能模块划分不同的服务,前端通过HAProxy来代理用户请求,后端服务可以根据负载来实现扩缩容。在服务发现模块中,通过Registrator来监视容器的启动和停止,根据容器暴露的端口和环境变量自动注册服务,后端存储使用了Consul,结合consul-template来发现服务的变化时,可以更新业务配置,并重载。
图片2.png

对于这些微服务化的游戏,服务模块小且多。那么,怎样快速部署,怎样弹性伸缩,怎样实现服务发现等等,都是我们需要解决的问题。容器化这些服务是一个不错的方案,接下来就是容器调度、编排平台的建设了。在当前也有多种方案可选,Mesos、Swarm等,而我们沿用了Kubernetes做来容器的整个调度管理平台,这也得利于之前VM模式下Kubernetes的成功应用。不同的是我们选择了高版本的Kubernetes,无论从功能的丰富上,性能的提升上,稳定性,可扩展性上来说,都有绝对的优势。以下会从几个维度来分析Kubernetes在微服务化游戏上的实践

基于kubernetes的解决方案

定制的网络与调度方案

集群的网络方案,是最为复杂,也是最为基础的一项。结合业务各模块之间的访问关系,我们选定的方案如下:
图片3.png

集群内各模块之间的通信:Overlay网络

我们基于Flannel来实现Overlay网络,每个主机拥有一个完整的子网,在这个扁平化的网络里面,管理简单。当我们创建容器的时候,会为容器分配一个唯一的虚拟IP,容器与容器之间(甚至母机与容器之间)可以方便地通信。当然,在实现中,业务也并非单纯的用IP来访问,而是结合DNS服务,通过域名来访问,后面会讲到。

以下是基于Flannel实现的Overlay网络的通信案例:
图片4.png

假设当sshd-2访问nginx-0:当packet{172.16.28.5:port => 172.16.78.9:port} 到达docker0时,根据node1上的路由规则,选对flannel.1作为出口,同时,根据iptables SNAT规则,将packet的源IP地址改为flannel.1的地址(172.16.28.0/12)。flannel.1是一个VXLAN设备,将packet进行隧道封包,然后发到node2。node2解包,然后根据node2上的路由规则,从接口docker0出发,再转给nginx-0。最终实现通信。

公司内网到集群内模块的通信:sriov-cni

sriov-cni是我们基于CNI定制的一套SRIOV网络方案,而CNI作为Kubernetes Network Plugins,插件式接入,非常方便,目前已开源,地址: https://github.com/hustcat/sriov-cni

以下是SRIOV网络拓扑图与实现细节:
图片5.png

  1. 母机上开启SRIOV功能,同时向公司申请子机IP资源,每个VF对应一个子机IP。
  2. Kubernetes在调度时,为每个Pod分配一个VF与子机IP。
  3. 在Pod拿到VF与IP资源,进行绑定设置后,就可以像物理网卡一样使用。

同时我们也做了一些优化:包括VF中断CPU绑定同时关闭物理机的irqbalance功能,容器内设置RPS,把容器内的中断分到各个CPU处理,来提升网络性能。

此类容器除了SRIOV网络之外,还有一个Overlay网络接口,也即是多重网络,可以把公司内网流量导入到Overlay集群中,实现集群内外之间的通信。在实际应用中,我们会用此类容器来收归通往集群内的通信,例如我们用HAProxy LB容器来提供服务。

对接公网:采用公司的TGW方案

TGW接入时,需要提供物理IP,所以对接TGW都会用到SRIOV网络的容器,例如上面提到的HAProxy LB容器。这样公网通过TGW访问haproxy,再由haproxy转到集群内容器,从而打通访问的整个链路。

集群内模块访问公司内网通信:NAT方案

调度:

在上述网络方案中,我们讲到SRIOV需要绑定物理IP,所以在容器调度中,除了Kubernetes原生提供的CPU\Memory\GPU之外,我们还把网络(物理IP)也作为一个计算资源,同时结合Kubernetes提供的extender scheduler接口,我们定制了符合我们需求的调度程序(cr-arbitrator)。其结构如下:
14527ab36e56d39613cb211ce189dfa6.png

cr-arbitrator做为extender scheduler,集成到Kubernetes中,包括两部分内容:

预选算法:
在完成Kuernetes的predicates调度后,会进入到cr-arbitrator的预选调度算法,我们以网络资源为例,会根据创建的容器是否需要物理IP,从而计算符合条件的node(母机)。

优选算法:
在整个集群中,需要物理IP的容器与Overlay网络的容器并未严格的划分,而是采用混合部署方式,所以在调度Overlay网络的容器时,需要优化分配到没有开启sriov的node上,只有在资源紧张的情况下,才会分配到sriov的node上。

除了cr-arbitrator实现的调度策略外,我们还实现了CPU核绑定。可以使容器在其生命周期内使用固定的CPU核,一方面是避免不同游戏业务CPU抢占问题;另一方面在稳定性、性能上(结合NUMA)得到保障及提升,同时在游戏业务资源核算方面会更加的清晰。

域名服务与负载均衡

在网络一节,我们讲到Kubernetes会为每个Pod分配一个虚拟的IP,但这个IP是非固定的,例如Pod发生故障迁移后,那么IP就会发生变化。所以在微服务化游戏架构下,业务模块之间的访问更多地采用域名方式进行访问。在Kubernetes生态链中,提供了SkyDNS作为DNS服务器,可以很好的解决域名访问问题。
  
在Kubernetes集群中,业务使用域名访问有两种方式:
  • 通过创建service来关联一组Pod,这时service会拥有一个名字(域名),Pod可以直接使用此名字进行访问。
  • 通过Pod的hostname访问(例如redis.default.pod...)。原生功能不支持,主要是kube2sky组件在生成域名规则有缺陷。针对这个问题,我们进行了优化,把Pod的hostname也记录到etcd中,实现SkyDNS对Pod的hostname进行域名解析。

负载均衡

通常情况下,游戏的一个模块可以通过deployment或者是replication controller来创建多个pod(即多组服务),同时这些容器又需要对外提供服务。如果给每个pod都配置一个公司内网IP,也是可以解决,但带来的问题就是物理IP资源浪费,同时无法做到负载均衡,以及弹性伸缩。因此,我们需要一个稳固、高效的Loadbalancer方案来代理这些服务,其中也评估了Kubernetes的service方案,不够成熟,在业务上应用甚少。刚好Kubernetes的第三方插件service-loadbalancer提供了这方面的功能,它主要是通过haproxy来提供代理服务,而且有其它在线游戏也用了haproxy,所以我们选择了service-loadbalancer。

service-loadbalancer除了HAProxy服务外,还有一个servicelb服务。servicelb通过Kubernetes的master api来时时获取对应Pod信息(IP和port),然后设置HAProxy的backends,再reload haproxy进程,从而保证HAProxy提供正确的服务。

监控与告警

监控、告警是整个游戏运营过程中最为核心的功能之一,在游戏运行过程中,对其性能进行收集、统计与分析,来发现游戏模块是否存在问题,负载是否过高,是否需要扩缩容之类等等。在监控这一块,我们在cAdvisor基础上进行定制,其结构如下:
图片7.png

  • 每个母机部署cAdvisor程序,用于收集母机上容器的性能数据,目前包括CPU使用情况、memory、网络流量、TCP连接数。
  • 在存储方面,目前直接写入到TenDis中,后续如果压力太大,还可以考虑在TenDis前加一层消息队列,例如Kafka集群。
  • Docker-monitor,是基于cAdvisor收集的数据而实现的一套性能统计与告警程序。在性能统计方面,除了对每个容器的性能计算外,还可以对游戏的每个服务进行综合统计分析,一方面用于前端用户展示,另一方面可以以此来对服务进行智能扩缩容。告警方面,用户可以按业务需求,配置个性化的告警规则,docker-monitor会针对不同的告警规则进行告警。

日志收集

Docker在容器日志处理这一块,目前已很丰富,除了默认的json-file之外,还提供了gcplogs、awslogs、fluentd等log driver。而在我们的日志系统中,还是简单的使用json-file,一方面容器日志并非整个方案中的关键节点,不想因为日志上的问题而影响Docker的正常服务;另一方面,把容器日志落地到母机上,接下来只需要把日志及时采集走即可,而采集这块方案可以根据情况灵活选择,可扩展性强。我们当前选择的方案是Filebeat + Kafka + Logstash + Elasticsearch,其结构如下:
图片8.png

我们以DaemonSet方式部署Filebeat到集群中,收集容器的日志,并上报到Kafka,最后存储到Elasticsearch集群,整个过程还是比较简单。而这里有个关键点,在业务混合部署的集群中,通过Filebeat收集日志时怎样去区分不同的业务?而这恰恰是做日志权限管理的前提条件,我们只希望用户只能查看自己业务的日志。以下是具体的处理方案与流程:
  • 首先我们在Docker日志中,除了记录业务程序的日志外,还会记录容器的name与namespace信息。
  • 接着我们在Filebeat的Kafka输出配置中,把namespace作为topic进行上报,最终对应到Elasticsearch的index。
  • 在我们的平台中,一个namespace只属于一个业务,通过namespace,可以快速的搜索到业务对应的日志,通过容器的name,可以查看业务内每个模块的日志。

基于image的发布扩容

在微服务化游戏中,模块与模块之间是高内聚低偶合,模块的版本内容一般都会通过持续集成来构建成一个个镜像(即image),然后以image来交付、部署。同时,游戏版本发布都有一个时间窗,整个发布流程都需要在这个时间窗里完成,否则就会影响用户体验。怎样做到版本的高效发布? 这里有两个关键点:一是基于Kubernetes的发布有效性;一是image下发效率;

Kubernetes在容器image发布这一块的支持已比较稳定,对于无状态的服务,还可以考虑rolling-update方式进行,使游戏服务近乎无缝地平滑升级,即在不停止对外服务的前提下完成应用的更新。

在提高image下发效率方面,我们基于Distribution打造了一个企业级镜像中心,主要涉及到以下几点:
  • Ceph集群提供稳定、强大的后端数据存储。
  • 性能优化:mirror方案与P2P方案,实现快速的下载镜像。同时对于时效性更高的用户需求,还可以实现image预部署方案。
  • 安全方面:不同类型用户不同的权限验证方案。例如公司内部用户会提供安全认证,其它用户提供用户名密码认证。
  • Notification Server实现pull\push日志记录,便于后续分析与审计。

以上便是Kubernetes在微服务化游戏中的一个解决方案,定制的网络与调度方案,为游戏容器的运行提供基础环境;域名服务与负载均衡,解决游戏高可用、弹性伸缩问题;通过性能数据、日志的收集、统计分析,及时发现程序问题与性能瓶颈,保证游戏容器稳定、可持续性运行;最后,基于image的发布扩容,使得游戏部署流程更加标准化以及高效。

Q&A

Q:CPU核绑定,能说下实现的细节吗?
A:在创建容器的时候,通过Kubernetes的resources项指定所需的CPU核数,再由scheduler调度到具体的母机上。我们对kubelet进行了改造,增加了CPU核计算与绑定逻辑,主要有两方面:一是计算母机上空闲的CPU核并分配到当前的容器;另一个是结合NUMA的cache机制,尽可能的把同一个NUMA node的CPU核分配给容器,从而提高性能。
Q:存储方面一笔带过了,文中提到把数据直接写到tendis ,都包含哪些业务数据呢?另外,Tendis的driver 已经开源了么?
A: Tendis是基于RocksDB和Twemproxy的Redis集群方案,提供高效的,可线性扩展,数据落地硬盘的Cache集群服务。和TenDB, TenDB cluster一起是腾讯游戏的Ten系列数据库解决方案。Tendis目前暂时没有开源。Tendis存储了容器的元数据,例如容器的名称,UID,状态信息,性能数据包括了CPU使用率、内存使用情况,TCP连接数,网络流量等。
Q:service loadblance如何实现的能详细介绍下吗?
A: service loadblance由两部分组成,一个是HAProxy程序,一个是service LB程序。其中servie LB程序通过访问k8s master api的watch service\endpoint的变化,得到当前正常服务的容器IP+port信息,然后把这些容器的IP+port绑定到HAProxy的backends,再reload haproxy程序,从而确保HAProxy的backends是最新的
Q:镜像mirror方案与P2P方案能简单介绍下实现技术方案吗?
A:mirror方案如下图,我们会在主要城市部署mirror节点,用于缓存镜像,这样在pull镜像的时候就可以从最近城市来拉取。
图片9.png

P2P方案:其结构如下图:
图片10.png

以上内容根据2017年06月13日晚微信群分享内容整理。分享人黄惠波,腾讯互娱高级工程师。主导腾讯游戏计算资源调度平台的建设工作。目前专注在线游戏容器调度平台的研发工作,包括Kubernetes/Docker的定制化开发以及容器技术在游戏领域的应用实践。 DockOne每周都会组织定向的技术分享,欢迎感兴趣的同学加微信:liyingjiesa,进群参与,您有想听的话题或者想分享的话题都可以给我们留言。

原文发布时间为:2017-06-22

本文作者:DarkForces.

本文来自云栖社区合作伙伴Dockerone.io,了解相关信息可以关注Dockerone.io。

原文标题:DockOne微信分享(一二六):Kubernetes在微服务化游戏中的探索实践

相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
相关文章
|
8天前
|
运维 监控 API
深入浅出:微服务架构的设计与实践
在软件开发的世界中,微服务架构如同一股清新的风,吹散了单体应用带来的沉重与复杂。本文将带你走进微服务的世界,一探究竟,从理念到实践,我们一同领略微服务的魅力所在。
|
8天前
|
运维 持续交付 开发者
深入浅出:微服务架构的设计与实践
在数字化浪潮的推动下,微服务架构以其独特的优势成为软件开发领域的新宠。本文将通过浅显易懂的语言,带领读者从理论到实践,一探微服务架构的奥秘。我们将一起学习如何设计一个高效、可扩展且易于维护的微服务系统,并探讨实施过程中可能遇到的挑战及解决方案。无论你是软件架构的初学者,还是希望深化理解的开发者,这篇文章都将为你提供有价值的见解和指导。
30 3
|
7天前
|
搜索推荐 API 开发者
深入浅出:微服务架构的设计与实践
在数字化时代的浪潮下,微服务架构以其灵活性、可扩展性和独立部署的特点,成为众多企业技术选型的宠儿。本文将通过浅显易懂的语言和生动的比喻,带领读者一探微服务世界的奥秘,从基础概念到实际案例,逐步揭示如何设计并实施一个高效、稳定的微服务系统。无论你是技术小白还是资深开发者,这篇文章都将为你打开一扇了解和应用微服务的大门。
|
4天前
|
运维 Cloud Native Devops
云原生架构的崛起与实践云原生架构是一种通过容器化、微服务和DevOps等技术手段,帮助应用系统实现敏捷部署、弹性扩展和高效运维的技术理念。本文将探讨云原生的概念、核心技术以及其在企业中的应用实践,揭示云原生如何成为现代软件开发和运营的主流方式。##
云原生架构是现代IT领域的一场革命,它依托于容器化、微服务和DevOps等核心技术,旨在解决传统架构在应对复杂业务需求时的不足。通过采用云原生方法,企业可以实现敏捷部署、弹性扩展和高效运维,从而大幅提升开发效率和系统可靠性。本文详细阐述了云原生的核心概念、主要技术和实际应用案例,并探讨了企业在实施云原生过程中的挑战与解决方案。无论是正在转型的传统企业,还是寻求创新的互联网企业,云原生都提供了一条实现高效能、高灵活性和高可靠性的技术路径。 ##
12 3
|
7天前
|
消息中间件 API 持续交付
深入浅出:微服务架构的设计与实践
在软件开发的广阔海洋中,微服务架构如同一艘灵活的帆船,它以模块化的方式切割复杂的单体应用,让服务独立、轻盈且易于管理。本文将带你从理论到实践,一步步揭开微服务的神秘面纱,探讨如何设计并实现一个高效、可扩展的微服务系统。无论你是架构新手还是资深开发者,这篇文章都将为你提供新的视角和实用的技巧。
24 6
|
4天前
|
Kubernetes Docker 微服务
构建高效的微服务架构:基于Docker和Kubernetes的最佳实践
在现代软件开发中,微服务架构因其灵活性和可扩展性而受到广泛青睐。本文探讨了如何利用Docker和Kubernetes来构建高效的微服务架构。我们将深入分析Docker容器的优势、Kubernetes的编排能力,以及它们如何结合实现高可用性、自动扩展和持续部署。通过具体的最佳实践和实际案例,读者将能够理解如何优化微服务的管理和部署过程,从而提高开发效率和系统稳定性。
|
5天前
|
消息中间件 监控 供应链
深入浅出:微服务架构的设计与实践
在软件开发的浩瀚宇宙中,微服务架构如同一颗璀璨的星辰,引领着现代应用设计的潮流。本文将带你穿越微服务的概念迷雾,探索其设计哲学和实战技巧,从理论到代码,一步步构建起你的微服务星系。
|
7天前
|
设计模式 消息中间件 监控
深入浅出微服务架构:从理论到实践
探索微服务,不仅是技术的革新,也是思维的革命。本文将带你走进微服务的世界,了解其核心理念、设计模式及实际应用案例,让你对微服务有更深入的认识和理解。
21 3
|
8天前
|
监控 负载均衡 应用服务中间件
探索微服务架构下的API网关设计与实践
在数字化浪潮中,微服务架构以其灵活性和可扩展性成为企业IT架构的宠儿。本文将深入浅出地介绍微服务架构下API网关的关键作用,探讨其设计原则与实践要点,旨在帮助读者更好地理解和应用API网关,优化微服务间的通信效率和安全性,实现服务的高可用性和伸缩性。
26 3
|
3天前
|
设计模式 消息中间件 监控
深入探索微服务架构的核心要素与实践策略
本文旨在解析微服务架构的关键概念、优势以及实施过程中的最佳实践。通过对微服务架构的基本原则、组件和技术选型的讨论,帮助读者理解如何构建高效、可扩展的微服务系统。同时,文章还将探讨在实践中可能遇到的挑战和解决方案,以期为后端开发者提供有价值的参考。