使用 Prometheus 监控 Docker 容器

本文涉及的产品
容器镜像服务 ACR,镜像仓库100个 不限时长
容器服务 Serverless 版 ACK Serverless,952元额度 多规格
容器服务 Serverless 版 ACK Serverless,317元额度 多规格
简介: 本文讲的是使用 Prometheus 监控 Docker 容器,【编者的话】Prometheus支持深度监控Docker容器的资源和运行特性,多维度查询,聚合Docker监控数据,作者认为Prometheus是最适合基于容器架构的监控系统,其特性是高纬度数据模型和灵活的查询语言 。
本文讲的是使用 Prometheus 监控 Docker 容器 【编者的话】Prometheus支持深度监控Docker容器的资源和运行特性,多维度查询,聚合Docker监控数据,作者认为Prometheus是最适合基于容器架构的监控系统,其特性是高纬度数据模型和灵活的查询语言 。

监控 Docker

在容器中运行你所有的服务可以让你充分利用资源并获得更好的性能,每个容器都运行在它们自己的cgroup中,同时Linux内核也给我们提供了各种各样的指标(metrics)。

尽管还有一些其它的Docker监控工具,但接下来我将向你解释为什么我认为SoundCloud 最新发布的 Prometheus 是最适合监控基于容器的基础设施的。

Prometheus特点是 高维度数据模型 ,时间序列是通过一个度量值名字和一套键值对识别。灵活的 查询语言 允许查询和绘制数据。它采用了先进的 度量标准类型 像汇总(summaries)、从指定时间跨度的总数构建 比率 或者是在有任何异常的时候 报警 并且没有任何依赖,在中断期间,使它成为一个可靠的系统进行调试。

我会集中讲为什么该数据模型和查询语言如此贴合容器式和动态基础设施,对于这些基础设施,你应该想着整个服务集群而不是单个服务器实例,把服务器想成牛群中的牛而不是各家自养分散开的宠物。

传统方法

比如说你想监控你容器的内存使用率。不支持维度数据的话,这样一个名为  webapp123  的容器的指标,可能被称为  container_memory_usage_bytes_webapp123

但是如果你想展示所有你的  webapp123  容器的内存利用率?更先进的监控解决方案像  graphite  支持这样。它的特性是层次、树状数据模型,这样的指标可能被称为  container.memory_usage_bytes.webapp123 。现在你可以使用通配符像  container.memory_usage_bytes.webapp*  来绘制所有你的 ‘webapp’ 容器的内存使用率。Graphite 也支持函数像 sum() 来通过使用一个表达式像 sum(container.memory_usage_bytes.webapp*)  聚合你所有服务器上的应用的内存使用率。

这是非常伟大并且有用的,但是有限制性。如果你不想聚合一个给定名字的所有容器而是一个给定镜像的?或者你想把部署你的 canary 同在你生产环境的服务器对比?

可以为每个用例想出一个层次结构,但是没有一个支持它们。现实情况显示,你预先往往不知道哪个问题需要从新回答一次并且你开始研究。

Prometheus

Prometheus 支持维度数据,你可以拥有全局和简单的指标名像  container_memory_usage_bytes  ,使用多个维度来标识你服务的指定实例。

我已经创建了一个简单的  container-exporter  来收集 Docker 容器的指标以及输出给 Prometheus 来消费。这个输出器使用容器的名字,id 和 镜像作为维度。额外的 per-exporter 维度可以在  prometheus.conf  中设置。

如果你使用指标名字直接作为一个查询表达式,它将返回有这个使用这个指标名字作为标签的所有时间序列。
container_memory_usage_bytes{env="prod",id="23f731ee29ae12fef1ef6726e2fce60e5e37342ee9e35cb47e3c7a24422f9e88",instance="http://1.2.3.4:9088/metrics",job="container-exporter",name="haproxy-exporter-int",image="prom/haproxy-exporter:latest"}    11468800.000000  
container_memory_usage_bytes{env="prod",id="57690ddfd3bb954d59b2d9dcd7379b308fbe999bce057951aa3d45211c0b5f8c",instance="http://1.2.3.5:9088/metrics",job="container-exporter",name="haproxy-exporter",image="prom/haproxy-exporter:latest"}    16809984.000000  
container_memory_usage_bytes{env="prod",id="907ac267ebb3299af08a276e4ea6fd7bf3cb26632889d9394900adc832a302b4",instance="http://1.2.3.2:9088/metrics",job="container-exporter",name="node-exporter",image="prom/container-exporter:latest"}  
...
...

如果你运行了许多容器,这个看起来像这样。

container_memory_usage_bytes.png


为了帮助你使得这数据更有意义,你可以过滤(filter) and/or 聚合(aggregate) 这些指标。

切片 & 切块(Slice & Dice)

> 注:slice应该是侧重一个完整的数据 ,dice相当于一个一个数据线中的一段。

使用 Prometheus 的查询语言,你可以对你想的任何维度的数据切片和切块。如果你对一个给定名字的所有容器感兴趣,你可以使用一个表达式像  container_memory_usage_bytes{name="consul-server"} ,这个将仅仅显示  name == "consul-server"  的时间序列。

Prometheus 也支持正则表达式,因此匹配完整的脚本你可以这样做 container_memory_usage_bytes{name=~"^consul"} ,这将展示起来像这样:

container_memory_usage_bytes_consul.png


你也使用使用任何维度过滤,因此你可以获取在一个给定主机,给定环境和给定区域上所有容器的指标。

聚合(Aggregation)

和 Graphite 类似,Prometheus 支持聚合函数但是它的维度更加丰富。使用 sum(container_memory_usage_bytes{name=~"^consul"}) 按预期汇总你所有 "consul-*" 的内存使用率。

现在比如说你想看你的 'consul' 和 'consul-server' 容器平均内存使用率的不同,这可以通过提供维度保存这聚合结果像  avg(container_memory_usage_bytes{name=~"^consul"}) by (name) 来实现:
container_memory_usage_bytes_consul_by_name-1.png


如果你在多个区域有服务并且配置了区域名作为一个额外的标签对,你也可以保存维度来展示每个名字和区域的内存使用率,通过使用一个像这样的表达式 :
avg(container_memory_usage_bytes{name=~"^consul"}) by (name,zone)`

使用 Prometheus + Container-Exporter

正如你所知,我喜欢在容器中运行一切,包括 container-exporter 和 Prometheus,运行  container-exporter 应该是非常容易的:
docker run -p 8080:8080 -v /sys/fs/cgroup:/cgroup \  
       -v /var/run/docker.sock:/var/run/docker.sock prom/container-exporter

现在你需要安装 Prometheus。关于这个参考 官方文档 。为了使得 Prometheus 从 container-exporter 拉取指标,你需要把它作为目标添加到配置。比如:
job: {  
name: "container-exporter"
scrape_interval: "1m"
target_group: {
  labels: {
    label: {
        name: "zone"
        value: "us-east-1"
    }
    label: {
        name: "env"
        value: "prod"
    }
}
target: "http://1.2.3.4:8080/metrics"
}
}

现在从新构建你的镜像如文档中描述的那样并启动它。Prometheus 现在应该每 60s 轮询你的 container-exporter。

总结

因为 Prometheus 的灵活性、性能和最小化依赖,所以我选择它作为我的监控系统。这就是为什么从去年起我就使用了Prometheus作为我们监控Docker的主要监控系统。

原文链接:Monitor Docker Containers with Prometheus(翻译:叶可强 审校:宋喻)

原文发布时间为:2015-01-31
本文作者:叶可强 
本文来自云栖社区合作伙伴DockerOne,了解相关信息可以关注DockerOne。
原文标题:使用 Prometheus 监控 Docker 容器
相关实践学习
容器服务Serverless版ACK Serverless 快速入门:在线魔方应用部署和监控
通过本实验,您将了解到容器服务Serverless版ACK Serverless 的基本产品能力,即可以实现快速部署一个在线魔方应用,并借助阿里云容器服务成熟的产品生态,实现在线应用的企业级监控,提升应用稳定性。
目录
相关文章
|
6天前
|
Kubernetes Cloud Native Docker
云原生时代的容器化实践:Docker和Kubernetes入门
【10月更文挑战第37天】在数字化转型的浪潮中,云原生技术成为企业提升敏捷性和效率的关键。本篇文章将引导读者了解如何利用Docker进行容器化打包及部署,以及Kubernetes集群管理的基础操作,帮助初学者快速入门云原生的世界。通过实际案例分析,我们将深入探讨这些技术在现代IT架构中的应用与影响。
28 2
|
4天前
|
运维 Cloud Native 虚拟化
一文吃透云原生 Docker 容器,建议收藏!
本文深入解析云原生Docker容器技术,涵盖容器与Docker的概念、优势、架构设计及应用场景等,建议收藏。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
一文吃透云原生 Docker 容器,建议收藏!
|
5天前
|
缓存 监控 开发者
掌握Docker容器化技术:提升开发效率的利器
在现代软件开发中,Docker容器化技术成为提升开发效率和应用部署灵活性的重要工具。本文介绍Docker的基本概念,并分享Dockerfile最佳实践、容器网络配置、环境变量和秘密管理、容器监控与日志管理、Docker Compose以及CI/CD集成等技巧,帮助开发者更高效地利用Docker。
|
6天前
|
监控 持续交付 Docker
Docker 容器化部署在微服务架构中的应用有哪些?
Docker 容器化部署在微服务架构中的应用有哪些?
|
6天前
|
监控 持续交付 Docker
Docker容器化部署在微服务架构中的应用
Docker容器化部署在微服务架构中的应用
|
6天前
|
安全 持续交付 Docker
微服务架构和 Docker 容器化部署的优点是什么?
微服务架构和 Docker 容器化部署的优点是什么?
|
8天前
|
运维 开发者 Docker
Docker Compose:简化容器化应用的部署与管理
Docker Compose:简化容器化应用的部署与管理
|
8天前
|
NoSQL Redis Docker
【赵渝强老师】使用Docker Compose管理容器
Docker Compose 通过 YAML 文件管理多个容器,简化复杂系统的部署和管理。本文介绍了 Docker Compose 的基本概念,并通过一个包含 Redis DB 和 Python Web 模块的示例,展示了如何使用 Docker Compose 部署和管理多容器应用。手动部署和 Docker Compose 部署的对比突显了 Docker Compose 在系统复杂度增加时的优势。
|
6月前
|
SQL 运维 监控
关系型数据库性能监控工具
【5月更文挑战第21天】
118 2
|
3月前
|
监控 Java 开发者
揭秘Struts 2性能监控:选对工具与方法,让你的应用跑得更快,赢在起跑线上!
【8月更文挑战第31天】在企业级应用开发中,性能监控对系统的稳定运行至关重要。针对流行的Java EE框架Struts 2,本文探讨了性能监控的工具与方法,包括商用的JProfiler、免费的VisualVM以及Struts 2自带的性能监控插件。通过示例代码展示了如何在实际项目中实施这些监控手段,帮助开发者发现和解决性能瓶颈,确保应用在高并发、高负载环境下稳定运行。选择合适的监控工具需综合考虑项目需求、成本、易用性和可扩展性等因素。
43 0