【数据蒋堂】非结构化数据分析是忽悠?

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:


大数据概念兴起的同时也带热了非结构化数据分析。传说一个企业中80%的数据都是非结构化数据,如果按占据空间来算,这个比例大体不假,毕竟音视频这类数据真地很大。有这么大的数据量,需要进行分析是很自然的事了,而要分析当然就要有相应的技术手段了。


那为什么说非结构化数据分析技术是忽悠呢?


不存在通用的非结构化数据计算技术


非结构化数据五花八门,有声音图像、文本网页、办公文档、设备日志、....;每类数据的都有各自的计算处理手段,比如语音识别、图像比对、文本搜索、图结构计算等等,但是并不存在一种适用于所有非结构化数据的通用计算技术。语音识别的方法不能用于图像比对、文本搜索和图结构计算也扯不上关系。


一个厂商如果擅长某种技术,那一定会直接宣称自己专业于该领域,而不会泛泛地说自己精于非结构化数据分析。比如人脸识别做得非常精准、或是文本敏感词挖掘的专业公司,显然这样更容易定位用户和应用场景。如果一家公司只说自己擅长非结构化数据分析而不指明具体的领域,那就不知道到底能做些什么了。


面向非结构化数据的通用技术只是存储


虽然许多专业技术领域都可以归类为对非结构化数据的处理,但总体应用范围并不广泛,大多数用户还用不上这些专门技术,而只是需要把这些数据存储下来。非结构化数据没有通用的分析计算技术,但存储和相应的管理(增删检索等)是可以通用化的。非结构化数据占据的空间较大,经常需要不同于结构化数据的特殊存储手段。


不过,如果不是数据量特别大,或者有高并发的检索需求,大多数的网络文件系统(如HDFS)已经能够胜任存储和访问需求。厂家如果只喊能做非结构化数据的存储和基本管理,那会显得没什么技术含量。所以这些厂商会不遗余力地往分析上靠,但没有实质东西。而能提供大容量高性能的访问的专业存储厂商却只会喊存储,而不会刻意提及分析。


通用分析技术在于相伴产生的结构化数据


采集非结构化数据的同时,常常会伴随着采集许多相关的结构化数据,比如音视频的制作人、制作时间、所属类别、时长、...;有些非结构化数据经过处理后也会转变成结构化数据,比如网页日志中拆解出访问人IP、访问时刻、关键搜索词等。所谓的非结构化数据分析,经常实际上是针对这些伴生而出的结构化数据,这个领域有不少较为成熟的通用计算技术(比如关系代数和关系数据库)。


但现在只喊结构化数据显得不够时髦,为了吸引用户,就要把本质上的结构化数据分析说成是非结构化数据分析了。


作为需求方的用户,这时候需要清楚地知道到底要对这些数据做什么处理。如果只是简单存储,那上个HDFS这类开源网络文件系统就够了;如果有高性能访问需求,那要找专业的存储厂商;如果其实要分析的是伴生出来的结构化数据,那就是已经熟悉的数据库类业务了;如果真有特定的处理需求,那也是找专门领域的厂商和技术。总之,不要泛泛地只说需要非结构化数据分析。


专栏作者简介


蒋步星,润乾软件创始人、首席科学家

清华大学计算机硕士,著有《非线性报表模型原理》等,1989年,中国首个国际奥林匹克数学竞赛团体冠军成员,个人金牌;2000年,创立润乾公司;2004年,首次在润乾报表中提出非线性报表模型,完美解决了中国式复杂报表制表难题,目前该模型已经成为报表行业的标准;2014年,经过7年开发,润乾软件发布不依赖关系代数模型的计算引擎——集算器,有效地提高了复杂结构化大数据计算的开发和运算效率;2015年,润乾软件被福布斯中文网站评为“2015福布斯中国非上市潜力企业100强”;2016年,荣获中国电子信息产业发展研究院评选的“2016年中国软件和信息服务业十大领军人物”;2017年, 自主创新研发新一代的数据仓库、云数据库等产品即将面世。


数据蒋堂


《数据蒋堂》的作者蒋步星,从事信息系统建设和数据处理长达20多年的时间。他丰富的工程经验与深厚的理论功底相互融合、创新思想与传统观念的相互碰撞,虚拟与现实的相互交织,产生出了一篇篇的沥血之作。此连载的内容涉及从数据呈现、采集到加工计算再到存储以及挖掘等各个方面。大可观数据世界之远景、小可看技术疑难之细节。针对数据领域一些技术难点,站在研发人员的角度从浅入深,进行全方位、360度无死角深度剖析;对于一些业内观点,站在技术人员角度阐述自己的思考和理解。蒋步星还会对大数据的发展,站在业内专家角度给予预测和推断。静下心来认真研读你会发现,《数据蒋堂》的文章,有的会让用户避免重复前人走过的弯路,有的会让攻城狮面对扎心的难题茅塞顿开,有的会为初入行业的读者提供一把开启数据世界的钥匙,有的甚至会让业内专家大跌眼镜,产生思想交锋。



原文发布时间为:2017-04-14 

本文作者:蒋步星

本文来自云栖社区合作伙伴“数据派THU”,了解相关信息可以关注“数据派THU”微信公众号

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
相关文章
|
4月前
|
数据采集 数据可视化 数据挖掘
用 Excel+Power Query 做电商数据分析:从 “每天加班整理数据” 到 “一键生成报表” 的配置教程
在电商运营中,数据是增长的关键驱动力。然而,传统的手工数据处理方式效率低下,耗费大量时间且易出错。本文介绍如何利用 Excel 中的 Power Query 工具,自动化完成电商数据的采集、清洗与分析,大幅提升数据处理效率。通过某美妆电商的实战案例,详细拆解从多平台数据整合到可视化报表生成的全流程,帮助电商从业者摆脱繁琐操作,聚焦业务增长,实现数据驱动的高效运营。
|
11月前
|
数据采集 数据可视化 数据挖掘
Pandas数据应用:天气数据分析
本文介绍如何使用 Pandas 进行天气数据分析。Pandas 是一个强大的 Python 数据处理库,适合处理表格型数据。文章涵盖加载天气数据、处理缺失值、转换数据类型、时间序列分析(如滚动平均和重采样)等内容,并解决常见报错如 SettingWithCopyWarning、KeyError 和 TypeError。通过这些方法,帮助用户更好地进行气候趋势预测和决策。
348 71
|
3月前
|
SQL 数据挖掘 BI
数据分析的尽头,是跳出数据看数据!
当前许多企业在数据分析上投入大量资源,却常陷入“数据越看越细,业务越看越虚”的困境。报表繁杂、指标众多,但决策难、行动少,分析流于形式。真正有价值的数据分析,不在于图表多漂亮,而在于能否带来洞察、推动决策、指导行动。本文探讨如何跳出数据、回归业务场景,实现数据驱动的有效落地。
|
9月前
|
SQL 人工智能 数据可视化
数据团队必读:智能数据分析文档(DataV Note)五种高效工作模式
数据项目复杂,涉及代码、数据、运行环境等多部分。随着AI发展,数据科学团队面临挑战。协作式数据文档(如阿里云DataV Note)成为提升效率的关键工具。它支持跨角色协同、异构数据处理、多语言分析及高效沟通,帮助创建知识库,实现可重现的数据科学过程,并通过一键分享报告促进数据驱动决策。未来,大模型AI将进一步增强其功能,如智能绘图、总结探索、NLP2SQL/Python和AutoReport,为数据分析带来更多可能。
565 142
|
10月前
|
SQL 数据可视化 大数据
从数据小白到大数据达人:一步步成为数据分析专家
从数据小白到大数据达人:一步步成为数据分析专家
576 92
|
数据挖掘 PyTorch TensorFlow
|
11月前
|
存储 数据采集 数据可视化
Pandas数据应用:电子商务数据分析
本文介绍如何使用 Pandas 进行电子商务数据分析,涵盖数据加载、清洗、预处理、分析与可视化。通过 `read_csv` 等函数加载数据,利用 `info()` 和 `describe()` 探索数据结构和统计信息。针对常见问题如缺失值、重复记录、异常值等,提供解决方案,如 `dropna()`、`drop_duplicates()` 和正则表达式处理。结合 Matplotlib 等库实现数据可视化,探讨内存不足和性能瓶颈的应对方法,并总结常见报错及解决策略,帮助提升电商企业的数据分析能力。
466 73
|
存储 机器学习/深度学习 数据可视化
数据集中存在大量的重复值,会对后续的数据分析和处理产生什么影响?
数据集中存在大量重复值可能会对后续的数据分析和处理产生多方面的负面影响
724 56
|
10月前
|
存储 数据采集 数据可视化
Pandas数据应用:医疗数据分析
Pandas是Python中强大的数据操作和分析库,广泛应用于医疗数据分析。本文介绍了使用Pandas进行医疗数据分析的常见问题及解决方案,涵盖数据导入、预处理、清洗、转换、可视化等方面。通过解决文件路径错误、编码不匹配、缺失值处理、异常值识别、分类变量编码等问题,结合Matplotlib等工具实现数据可视化,并提供了解决常见报错的方法。掌握这些技巧可以提高医疗数据分析的效率和准确性。
316 22
|
8月前
|
机器学习/深度学习 传感器 数据采集
基于机器学习的数据分析:PLC采集的生产数据预测设备故障模型
本文介绍如何利用Python和Scikit-learn构建基于PLC数据的设备故障预测模型。通过实时采集温度、振动、电流等参数,进行数据预处理和特征提取,选择合适的机器学习模型(如随机森林、XGBoost),并优化模型性能。文章还分享了边缘计算部署方案及常见问题排查,强调模型预测应结合定期维护,确保系统稳定运行。
860 0