运维架构服务监控Open-Falcon

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
云数据库 RDS PostgreSQL,集群系列 2核4GB
简介:

一、 介绍
监控系统是整个运维环节,乃至整个产品生命周期中最重要的一环,事前及时预警发现故障,事后提供翔实的数据用于追查定位问题。监控系统作为一个成熟的运维产品,业界有很多开源的实现可供选择。当公司刚刚起步,业务规模较小,运维团队也刚刚建立的初期,选择一款开源的监控系统,是一个省时省力,效率最高的方案。之后,随着业务规模的持续快速增长,监控的对象也越来越多,越来越复杂,监控系统的使用对象也从最初少数的几个SRE,扩大为更多的DEVS,SRE。这时候,监控系统的容量和用户的“使用效率”成了最为突出的问题。

监控系统业界有很多杰出的开源监控系统。我们在早期,一直在用zabbix,不过随着业务的快速发展,以及互联网公司特有的一些需求,现有的开源的监控系统在性能、扩展性、和用户的使用效率方面,已经无法支撑了。

因此,我们在过去的一年里,从互联网公司的一些需求出发,从各位SRE、SA、DEVS的使用经验和反馈出发,结合业界的一些大的互联网公司做监控,用监控的一些思考出发,设计开发了小米的监控系统:open-falcon。

二、 特点
1、强大灵活的数据采集:自动发现,支持falcon-agent、snmp、支持用户主动push、用户自定义插件支持、opentsdb data model like(timestamp、endpoint、metric、key-value tags)
2、水平扩展能力:支持每个周期上亿次的数据采集、告警判定、历史数据存储和查询
3、高效率的告警策略管理:高效的portal、支持策略模板、模板继承和覆盖、多种告警方式、支持callback调用
4、人性化的告警设置:最大告警次数、告警级别、告警恢复通知、告警暂停、不同时段不同阈值、支持维护周期
5、高效率的graph组件:单机支撑200万metric的上报、归档、存储(周期为1分钟)
6、高效的历史数据query组件:采用rrdtool的数据归档策略,秒级返回上百个metric一年的历史数据
7、dashboard:多维度的数据展示,用户自定义Screen
8、高可用:整个系统无核心单点,易运维,易部署,可水平扩展
9、开发语言: 整个系统的后端,全部golang编写,portal和dashboard使用python编写。

三、 架构
X2yzf3waxRFwHXBkyFXPE7TH5wnQiWyn

每台服务器,都有安装falcon-agent,falcon-agent是一个golang开发的daemon程序,用于自发现的采集单机的各种数据和指标,这些指标包括不限于以下几个方面,共计200多项指标。

CPU相关
磁盘相关
IO
Load
内存相关
网络相关
端口存活、进程存活
ntp offset(插件)
某个进程资源消耗(插件)
netstat、ss 等相关统计项采集
机器内核配置参数

只要安装了falcon-agent的机器,就会自动开始采集各项指标,主动上报,不需要用户在server做任何配置(这和zabbix有很大的不同),这样做的好处,就是用户维护方便,覆盖率高。当然这样做也会server端造成较大的压力,不过open-falcon的服务端组件单机性能足够高,同时都可以水平扩展,所以自动多采集足够多的数据,反而是一件好事情,对于SRE和DEV来讲,事后追查问题,不再是难题。

另外,falcon-agent提供了一个proxy-gateway,用户可以方便的通过http接口,push数据到本机的gateway,gateway会帮忙高效率的转发到server端。

四、 数据模型
Data Model是否强大,是否灵活,对于监控系统用户的“使用效率”至关重要。比如以zabbix为例,上报的数据为hostname(或者ip)、metric,那么用户添加告警策略、管理告警策略的时候,就只能以这两个维度进行。举一个最常见的场景:
hostA的磁盘空间,小于5%,就告警。一般的服务器上,都会有两个主要的分区,根分区和home分区,在zabbix里面,就得加两条规则;如果是hadoop的机器,一般还会有十几块的数据盘,还得再加10多条规则,这样就会痛苦,不幸福,不利于自动化(当然zabbix可以通过配置一些自动发现策略来搞定这个,不过比较麻烦)。

五、 数据收集
transfer,接收客户端发送的数据,做一些数据规整,检查之后,转发到多个后端系统去处理。在转发到每个后端业务系统的时候,transfer会根据一致性hash算法,进行数据分片,来达到后端业务系统的水平扩展。

transfer 提供jsonRpc接口和telnet接口两种方式,transfer自身是无状态的,挂掉一台或者多台不会有任何影响,同时transfer性能很高,每分钟可以转发超过500万条数据。

transfer目前支持的业务后端,有三种,judge、graph、opentsdb。judge是我们开发的高性能告警判定组件,graph是我们开发的高性能数据存储、归档、查询组件,opentsdb是开源的时间序列数据存储服务。可以通过transfer的配置文件来开启。

transfer的数据来源,一般有三种:
1、falcon-agent采集的基础监控数据
2、falcon-agent执行用户自定义的插件返回的数据
3、client library:线上的业务系统,都嵌入使用了统一的perfcounter.jar,对于业务系统中每个RPC接口的qps、latency都会主动采集并上报
说明:上面这三种数据,都会先发送给本机的proxy-gateway,再由gateway转发给transfer。

基础监控是指只要是个机器(或容器)就能加的监控,比如cpu mem net io disk等,这些监控采集的方式固定,不需要配置,也不需要用户提供额外参数指定,只要agent跑起来就可以直接采集上报上去; 非基础监控则相反,比如端口监控,你不给我端口号就不行,不然我上报所有65535个端口的监听状态你也用不了,这类监控需要用户配置后才会开始采集上报的监控(包括类似于端口监控的配置触发类监控,以及类似于mysql的插件脚本类监控),一般就不算基础监控的范畴了。

六、 报警
报警判定,是由judge组件来完成。用户在web portal来配置相关的报警策略,存储在MySQL中。heartbeat server 会定期加载MySQL中的内容。judge也会定期和heartbeat server保持沟通,来获取相关的报警策略。

heartbeat sever不仅仅是单纯的加载MySQL中的内容,根据模板继承、模板项覆盖、报警动作覆盖、模板和hostGroup绑定,计算出最终关联到每个endpoint的告警策略,提供给judge组件来使用。

transfer转发到judge的每条数据,都会触发相关策略的判定,来决定是否满足报警条件,如果满足条件,则会发送给alarm,alarm再以邮件、短信、米聊等形式通知相关用户,也可以执行用户预先配置好的callback地址。

用户可以很灵活的来配置告警判定策略,比如连续n次都满足条件、连续n次的最大值满足条件、不同的时间段不同的阈值、如果处于维护周期内则忽略 等等。
另外也支持突升突降类的判定和告警。

七、 API
到这里,数据已经成功的存储在了graph里。如何快速的读出来呢,读过去1小时的,过去1天的,过去一月的,过去一年的,都需要在1秒之内返回。

这些都是靠graph和API组件来实现的,transfer会将数据往graph组件转发一份,graph收到数据以后,会以rrdtool的数据归档方式来存储,同时提供查询RPC接口。

API面向终端用户,收到查询请求后,会去多个graph里面,查询不同metric的数据,汇总后统一返回给用户。

八、 面板

九、 存储
对于监控系统来讲,历史数据的存储和高效率查询,永远是个很难的问题!
数据量大:目前我们的监控系统,每个周期,大概有2000万次数据上报(上报周期为1分钟和5分钟两种,各占50%),一天24小时里,从来不会有业务低峰,不管是白天和黑夜,每个周期,总会有那么多的数据要更新。

写操作多:一般的业务系统,通常都是读多写少,可以方便的使用各种缓存技术,再者各类数据库,对于查询操作的处理效率远远高于写操作。而监控系统恰恰相反,写操作远远高于读。每个周期几千万次的更新操作,对于常用数据库(MySQL、postgresql、mongodb)都是无法完成的。

高效率的查:我们说监控系统读操作少,是说相对写入来讲。监控系统本身对于读的要求很高,用户经常会有查询上百个meitric,在过去一天、一周、一月、一年的数据。如何在1秒内返回给用户并绘图,这是一个不小的挑战。

open-falcon在这块,投入了较大的精力。我们把数据按照用途分成两类,一类是用来绘图的,一类是用户做数据挖掘的。

对于绘图的数据来讲,查询要快是关键,同时不能丢失信息量。对于用户要查询100个metric,在过去一年里的数据时,数据量本身就在那里了,很难1秒之类能返回,另外就算返回了,前端也无法渲染这么多的数据,还得采样,造成很多无谓的消耗和浪费。我们参考rrdtool的理念,在数据每次存入的时候,会自动进行采样、归档。我们的归档策略如下,历史数据保存5年。同时为了不丢失信息量,数据归档的时候,会按照平均值采样、最大值采样、最小值采样存三份。

运维架构服务监控Open-Falcon(http://www.roncoo.com/course/view/ae1dbb70496349d3a8899b6c68f7d10b

相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
相关文章
|
1月前
|
Prometheus 运维 监控
智能运维实战:Prometheus与Grafana的监控与告警体系
【10月更文挑战第26天】Prometheus与Grafana是智能运维中的强大组合,前者是开源的系统监控和警报工具,后者是数据可视化平台。Prometheus具备时间序列数据库、多维数据模型、PromQL查询语言等特性,而Grafana支持多数据源、丰富的可视化选项和告警功能。两者结合可实现实时监控、灵活告警和高度定制化的仪表板,广泛应用于服务器、应用和数据库的监控。
260 3
|
9天前
|
消息中间件 存储 安全
分布式系统架构3:服务容错
分布式系统因其复杂性,故障几乎是必然的。那么如何让系统在不可避免的故障中依然保持稳定?本文详细介绍了分布式架构中7种核心的服务容错策略,包括故障转移、快速失败、安全失败等,以及它们在实际业务场景中的应用。无论是支付场景的快速失败,还是日志采集的安全失败,每种策略都有自己的适用领域和优缺点。此外,文章还为技术面试提供了解题思路,助你在关键时刻脱颖而出。掌握这些策略,不仅能提升系统健壮性,还能让你的技术栈更上一层楼!快来深入学习,走向架构师之路吧!
44 11
|
5天前
|
Prometheus 运维 监控
Prometheus+Grafana+NodeExporter:构建出色的Linux监控解决方案,让你的运维更轻松
本文介绍如何使用 Prometheus + Grafana + Node Exporter 搭建 Linux 主机监控系统。Prometheus 负责收集和存储指标数据,Grafana 用于可视化展示,Node Exporter 则采集主机的性能数据。通过 Docker 容器化部署,简化安装配置过程。完成安装后,配置 Prometheus 抓取节点数据,并在 Grafana 中添加数据源及导入仪表盘模板,实现对 Linux 主机的全面监控。整个过程简单易行,帮助运维人员轻松掌握系统状态。
46 3
|
17天前
|
弹性计算 运维 Serverless
卓越效能,极简运维,体验Serverless高可用架构,完成任务可领取转轮日历!
卓越效能,极简运维,体验Serverless高可用架构,完成任务可领取转轮日历!
|
1月前
|
运维 监控 安全
自动化运维的利剑:Ansible在现代IT架构中的应用
在数字化浪潮中,企业对IT系统的敏捷性和可靠性要求日益提高。Ansible,一种简单但强大的自动化运维工具,正成为现代IT架构中不可或缺的一部分。它通过声明式编程语言YAM,简化了系统配置、应用部署和任务自动化的过程,显著提升了运维效率和准确性。本文将深入探讨Ansible的核心特性、应用场景以及如何有效整合进现有IT环境,为读者揭示其在自动化运维中的实用价值和未来发展潜力。
|
1月前
|
Kubernetes Cloud Native Docker
云原生之旅:从传统架构到容器化服务的演变
随着技术的快速发展,云计算已经从简单的虚拟化服务演进到了更加灵活和高效的云原生时代。本文将带你了解云原生的概念、优势以及如何通过容器化技术实现应用的快速部署和扩展。我们将以一个简单的Python Web应用为例,展示如何利用Docker容器进行打包和部署,进而探索Kubernetes如何管理这些容器,确保服务的高可用性和弹性伸缩。
|
1月前
|
运维 Devops 应用服务中间件
自动化运维的利剑:Ansible在现代IT架构中的应用
【10月更文挑战第42天】本文旨在揭示自动化运维工具Ansible如何革新现代IT架构,通过简化配置管理和部署流程,提升效率和可靠性。我们将探索Ansible的核心功能、语言特性以及其在DevOps文化中的角色。文章还将展示如何借助Ansible构建模块化和可重用的配置代码,实现快速迭代与部署,并确保系统一致性。通过阅读本文,运维人员将了解如何利用Ansible优化日常任务,加速产品上线速度,同时提高系统的稳健性。
43 5
|
1月前
|
存储 负载均衡 监控
如何利用Go语言的高效性、并发支持、简洁性和跨平台性等优势,通过合理设计架构、实现负载均衡、构建容错机制、建立监控体系、优化数据存储及实施服务治理等步骤,打造稳定可靠的服务架构。
在数字化时代,构建高可靠性服务架构至关重要。本文探讨了如何利用Go语言的高效性、并发支持、简洁性和跨平台性等优势,通过合理设计架构、实现负载均衡、构建容错机制、建立监控体系、优化数据存储及实施服务治理等步骤,打造稳定可靠的服务架构。
36 1
|
1月前
|
机器学习/深度学习 人工智能 运维
智能化运维:提升IT服务效率的新引擎###
本文深入浅出地探讨了智能化运维(AIOps)如何革新传统IT运维模式,通过大数据、机器学习与自动化技术,实现故障预警、快速定位与处理,从而显著提升IT服务的稳定性和效率。不同于传统运维依赖人工响应,AIOps强调预测性维护与自动化流程,为企业数字化转型提供强有力的支撑。 ###
|
1月前
|
消息中间件 数据采集 运维
一份运维监控的终极秘籍!监控不到位,宕机两行泪
【10月更文挑战第25天】监控指标的采集分为基础监控和业务监控。基础监控涉及CPU、内存、磁盘等硬件和网络信息,而业务监控则关注服务运行状态。常见的监控数据采集方法包括日志、JMX、REST、OpenMetrics等。Google SRE提出的四个黄金指标——错误、延迟、流量和饱和度,为监控提供了重要指导。错误监控关注系统和业务错误;延迟监控关注服务响应时间;流量监控关注系统和服务的访问量;饱和度监控关注服务利用率。这些指标有助于及时发现和定位故障。
157 1

热门文章

最新文章