云计算智领大数据 发掘行业应用新价值

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

本文讲的是云计算智领大数据 发掘行业应用新价值,云计算作为新一代信息技术的重要发展方向,已被广泛认为是支撑信息化应用和业务模式创新的核心,其技术与产业发展,以及应用的推广普及,对于我国深入推进两化融合、完善社会管理手段、转变经济发展方式具有重要战略作用。在云计算技术的支撑下,大数据已经成为新时代重要的战略资源。随着经济社会信息化日臻成熟,云计算、移动互联网和物联网等新一代信息技术的广泛应用,数据增长速度越来越快,数据类型越来越丰富,大数据的价值日渐凸显。大数据时代,无论是政府、互联网公司、IT企业还是行业用户都面临巨大挑战及机遇。企业的决策方式正在从“业务驱动”转变“数据驱动”。真正能够利用好大数据、并将其价值转化成生产力的企业必将具备强劲有力的竞争优势,从而成为行业的领导者。
  深入探讨新一代信息技术的发展趋势,全面把握新一代信息技术在传统产业技术改造和转型提升中的新需求、新应用和新机遇,是当今最为重要的课题。2013年11月2日,主题为“创新云计算 智领大数据时代变革”的中国云计算产业发展及大数据应用高峰论坛在武汉科技会展中心胜利召开,论坛上,知名专家、主管领导、行业龙头企业及云计算解决方案提供商,就云计算及大数据解决方案及应用进行了深入探讨。
  云计算加速信息技术在行业领域应用
  云计算作为加快推进我国两化融合发展的突破口,将极大地推动中国信息基础设施建设,推动传统产业的改造升级和加速培育高科技新兴产业,将有利于行业企业特别是中小企业低成本、灵活实现信息化运营,节约IT资源和降低总体拥有成本。两化深度融合要求进一步深化信息技术在研发设计、生产、流通、管理等关键环节上的应用,促进信息技术从单项应用向综合集成转变,云计算为产业链上下协同提供了优质的解决方案,融合各类资源,并通过虚拟化技术向用户提供标准化服务,支持工业在广泛的网络资源环境下,为产品提供高附加值、低成本和全球化制造的服务。随着能源、金融、制造、电信、物流等行业信息化应用向纵深发展,工业领域各行业迫切需要应用云计算新兴技术来满足信息系统整合、商业数据分析处理等领域的需求,以建设高效、动态、弹性的“灵动型”一体化云平台。
  新一代信息技术的融合发展引发大数据热潮
  大数据伴随着物联网、移动互联网、数字家庭、社会化网络等新一代信息技术应用不断增长,随着对大数据行业应用的深入研究,赛迪顾问认为未来在智慧城市、电信、金融、卫生以及电子政务等领域将是大数据技术应用的最佳行业沃土。特别是在智慧城市、电信和金融行业,随着行业信息化的深入开展,大数据应用热潮已经掀开了新的一页,中国大数据市场将进入高速发展时期。对大数据的处理和分析成为新一代信息技术的融合发展的核心支撑,而云计算则为这些海量的、多样化的大数据提供存储和运算的支撑平台。
  大数据成为信息再价值化的金矿
  电信行业信息化的进步和信息通信技术的发展使得信息化平台采集、处理、积累的数据越来越多,数据量增速也越来越快。运营商已深刻认识到大数据的重要性,在企业内部已经利用大数据实现消费行为记录管理。在经营分析系统中,深度挖掘融合市场、集团、客户、客服、网络、财务数据,为业务和决策部门提供较完备的用户数据分析,使公司决策由“经验型”转为“分析型”,实现了精细化运营。
  金融服务企业都希望能充分利用各种服务交付渠道如分公司、网络、移动通信等海量客户数据,开发新的预测分析模型,实现对客户消费行为模式进行分析,提高客户转化率。一些互联网厂商将凭借自身数据资源进入金融领域,传统金融企业也将改变经营思路重塑业务架构,而新的商业价值将在这场变革中被发掘出来。
  智慧城市建设带来数据的爆发式增长,大数据涵盖智慧交通、智慧医疗、智慧生活等智慧城市建设的各个角落,通过对存储在云计算平台上大数据进行挖掘和分析,能够为城市规划和建设提供强大的决策支持,成为智慧城市建设的智慧源泉。
  面对国内云计算及大数据产业的蓬勃发展,云计算及大数据市场的迅速扩张,云计算及大数据应用不断创新的形势,充分挖掘云计算及大数据潜在应用新价值,将成为商业活动和经济运行的决策支持,对大数据的利用将成为企业提高核心竞争力和抢占市场先机的关键。

原文发布时间为:2013-11-05
本文作者:赛迪顾问
本文来自云栖社区合作伙伴IT168,了解相关信息可以关注IT168。

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
1月前
|
SQL 存储 分布式计算
ODPS技术架构深度剖析与实战指南——从零开始掌握阿里巴巴大数据处理平台的核心要义与应用技巧
【10月更文挑战第9天】ODPS是阿里巴巴推出的大数据处理平台,支持海量数据的存储与计算,适用于数据仓库、数据挖掘等场景。其核心组件涵盖数据存储、计算引擎、任务调度、资源管理和用户界面,确保数据处理的稳定、安全与高效。通过创建项目、上传数据、编写SQL或MapReduce程序,用户可轻松完成复杂的数据处理任务。示例展示了如何使用ODPS SQL查询每个用户的最早登录时间。
98 1
|
22天前
|
存储 人工智能 大数据
物联网、大数据、云计算、人工智能之间的关系
物联网、大数据、云计算、人工智能之间的关系是紧密相连、相互促进的。这四者既有各自独立的技术特征,又能在不同层面上相互融合,共同推动信息技术的发展和应用。
182 0
|
1月前
|
存储 分布式计算 druid
大数据-149 Apache Druid 基本介绍 技术特点 应用场景
大数据-149 Apache Druid 基本介绍 技术特点 应用场景
59 1
大数据-149 Apache Druid 基本介绍 技术特点 应用场景
|
1月前
|
算法 大数据 数据库
云计算与大数据平台的数据库迁移与同步
本文详细介绍了云计算与大数据平台的数据库迁移与同步的核心概念、算法原理、具体操作步骤、数学模型公式、代码实例及未来发展趋势与挑战。涵盖全量与增量迁移、一致性与异步复制等内容,旨在帮助读者全面了解并应对相关技术挑战。
37 3
|
11天前
|
API 数据处理 开发工具
云计算在金融行业的应用与挑战
云计算在金融行业的应用与挑战
20 0
|
1月前
|
机器学习/深度学习 边缘计算 人工智能
探索云计算的未来:技术趋势与应用场景
【10月更文挑战第4天】探索云计算的未来:技术趋势与应用场景
82 7
ly~
|
1月前
|
供应链 搜索推荐 安全
大数据模型的应用
大数据模型在多个领域均有广泛应用。在金融领域,它可用于风险评估与预测、智能营销及反欺诈检测,助力金融机构做出更加精准的决策;在医疗领域,大数据模型能够协助疾病诊断与预测、优化医疗资源管理和加速药物研发;在交通领域,该技术有助于交通流量预测、智能交通管理和物流管理,从而提升整体交通效率;电商领域则借助大数据模型实现商品推荐、库存管理和价格优化,增强用户体验与企业效益;此外,在能源和制造业中,大数据模型的应用范围涵盖从需求预测到设备故障预测等多个方面,全面推动了行业的智能化转型与升级。
ly~
113 2
ly~
|
1月前
|
供应链 搜索推荐 大数据
大数据在零售业中的应用
在零售业中,大数据通过分析顾客的购买记录、在线浏览习惯等数据,帮助零售商理解顾客行为并提供个性化服务。例如,分析网站点击路径以了解顾客兴趣,并利用历史购买数据开发智能推荐系统,提升销售和顾客满意度。此外,大数据还能优化库存管理,通过分析销售数据和市场需求,更准确地预测需求,减少库存积压和缺货现象,提高资金流动性。
ly~
323 2
ly~
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
大数据在智慧金融中的应用
在智能算法交易中,深度学习揭示价格波动的复杂动力学,强化学习依据市场反馈优化策略,助力投资者获取阿尔法收益。智能监管合规利用自然语言处理精准解读法规,实时追踪监管变化,确保机构紧跟政策。大数据分析监控交易,预警潜在违规行为,变被动防御为主动预防。数智化营销通过多维度数据分析,构建细致客户画像,提供个性化产品推荐。智慧客服借助 AI 技术提升服务质量,增强客户满意度。
ly~
121 2
ly~
|
1月前
|
供应链 监控 搜索推荐
大数据的应用场景
大数据在众多行业中的应用场景广泛,涵盖金融、零售、医疗保健、交通物流、制造、能源、政府公共服务及教育等领域。在金融行业,大数据用于风险评估、精准营销、反欺诈以及决策支持;零售业则应用于商品推荐、供应链管理和门店运营优化等;医疗保健领域利用大数据进行疾病预测、辅助诊断和医疗质量评估;交通物流业通过大数据优化物流配送、交通管理和运输安全;制造业则在生产过程优化、设备维护和供应链协同方面受益;能源行业运用大数据提升智能电网管理和能源勘探效率;政府和公共服务部门借助大数据改善城市管理、政务服务及公共安全;教育行业通过大数据实现个性化学习和资源优化配置;体育娱乐业则利用大数据提升赛事分析和娱乐制作水平。
ly~
425 2
下一篇
无影云桌面