独家 | 教你在R中使用Keras和TensorFlow构建深度学习模型

简介:

引言:


在R和Python之间如何进行选择一直是一个热议的话题。机器学习世界也被不同语言偏好所划分。但是随着深度学习的盛行,天平逐渐向Python倾斜,因为截至目前为止Python具有大量R所没有的深度学习的资源库和框架。


我个人从R转到Python是因为我想更加深入机器学习的领域,而仅仅使用R的话,这(在之前)是几乎不可能实现的事情。不过也仅此而已!


随着Keras在R中的实现,语言选择的斗争又重新回到舞台中央。Python几乎已经慢慢变成深度学习建模的默认语言,但是随着在R中以TensorFlow(CPU和GPU均兼容)为后端的Keras框架的发行, 即便是在深度学习领域,R与Python抢占舞台的战争也再一次打响。


下面我们将会看到怎样在R中安装以TensorFlow为基础的Keras框架,然后在RStudio中构建我们基于经典MNIST数据集的第一个神经网络模型。

 

内容列表:


  • 以TensorFlow为后端的Keras框架安装

  • 在R中可以使用Keras来构建模型的不同类型

  • 在R中使用MLP将MNIST手写数字进行归类

  • 将MNIST结果与Python中同等代码结果进行比较

  • 结语

 

一、以TensorFlow为后端的Keras框架安装


在RStudio中安装Keras的步骤非常简单。只要跟着以下步骤,你就可以在R中构建你的第一个神经网络模型。


install.packages("devtools")

devtools::install_github("rstudio/keras")


以上步骤会从Github资源库下载Keras。现在是时候把keras加载进R,然后安装TensorFlow。


library(keras)


在默认情况下,RStudio会加载CPU版本的TensorFlow。如果没有成功加载CPU版本的TensorFlow, 使用以下指令来下载。


install_tensorflow()


如要为单独用户或桌面系统安装GPU支持的TensorFlow,使用以下指令。


install_tensorflow(gpu=TRUE)


为多重用户安装,请参考这个指南:https://tensorflow.rstudio.com/installation_gpu.html


现在在我们的RStudio里,keras和TensorFlow都安装完毕了。让我们开始构建第一个在R中的神经网络来处理MNIST数据集吧。

 

二、在R中可以使用keras来构建模型的不同类型


以下是可以在R中使用Keras构建的模型列表


  1. 多层感知器(Multi-Layer Perceptrons)

  2. 卷积神经网络(Convoluted Neural Networks)

  3. 递归神经网络(Recurrent Neural Networks)

  4. Skip-Gram模型

  5. 使用预训练的模型(比如VGG16、RESNET等)

  6. 微调预训练的模型


让我们从构建仅有一个隐藏层的简单MLP模型开始,来试着对手写数字进行归类。

 

三、在R中使用MLP将MNIST手写数字进行归类


#loading keras library

library(keras)

#loading the keras inbuilt mnist dataset

data<-dataset_mnist()

#separating train and test file

train_x<-data$train$x

train_y<-data$train$y

test_x<-data$test$x

test_y<-data$test$y

rm(data)

# converting a 2D array into a 1D array for feeding into the MLP and normalising the matrix

train_x <- array(train_x, dim = c(dim(train_x)[1], prod(dim(train_x)[-1]))) / 255

test_x <- array(test_x, dim = c(dim(test_x)[1], prod(dim(test_x)[-1]))) / 255

#converting the target variable to once hot encoded vectors using keras inbuilt function

train_y<-to_categorical(train_y,10)

test_y<-to_categorical(test_y,10)

#defining a keras sequential model

model <- keras_model_sequential()

#defining the model with 1 input layer[784 neurons], 1 hidden layer[784 neurons] with dropout rate 0.4 and 1 output layer[10 neurons]

#i.e number of digits from 0 to 9

model %>%

layer_dense(units = 784, input_shape = 784) %>%

layer_dropout(rate=0.4)%>%

layer_activation(activation = 'relu') %>%

layer_dense(units = 10) %>%

layer_activation(activation = 'softmax')

#compiling the defined model with metric = accuracy and optimiser as adam.

model %>% compile(

loss = 'categorical_crossentropy',

optimizer = 'adam',

metrics = c('accuracy')

)

#fitting the model on the training dataset

model %>% fit(train_x, train_y, epochs = 100, batch_size = 128)

#Evaluating model on the cross validation dataset

loss_and_metrics <- model %>% evaluate(test_x, test_y, batch_size = 128)


以上的代码获得了99.14%的训练精度和96.89%的验证精度。在我的i5处理器上跑这段代码完整训练一次用时13.5秒,而在TITANx GPU上,验证精度可以达到98.44%,训练一次平均用时2秒。

 

四、使用keras来构建MLP模型——R Vs. Python


为了更好地比较,我同样使用Python来实现解决以上的MINIST归类问题。结果不应当有任何差别,因为R会创建一个进程(conda instance)并在其中运行keras。但你仍然可以尝试以下同等的Python代码。


#importing the required libraries for the MLP model

import keras

from keras.models import Sequential

import numpy as np

 

#loading the MNIST dataset from keras

from keras.datasets import mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data()

 

#reshaping the x_train, y_train, x_test and y_test to conform to MLP input and output dimensions

x_train=np.reshape(x_train,(x_train.shape[0],-1))/255

x_test=np.reshape(x_test,(x_test.shape[0],-1))/255

 

import pandas as pd

y_train=pd.get_dummies(y_train)

y_test=pd.get_dummies(y_test)

 

#performing one-hot encoding on target variables for train and test

y_train=np.array(y_train)

y_test=np.array(y_test)

 

#defining model with one input layer[784 neurons], 1 hidden layer[784 neurons] with dropout rate 0.4 and 1 output layer [10 #neurons]

model=Sequential()

 

from keras.layers import Dense

 

model.add(Dense(784, input_dim=784, activation='relu'))

keras.layers.core.Dropout(rate=0.4)

model.add(Dense(10,input_dim=784,activation='softmax'))

 

# compiling model using adam optimiser and accuracy as metric

model.compile(loss='categorical_crossentropy', optimizer="adam", metrics=['accuracy'])

# fitting model and performing validation

 

model.fit(x_train,y_train,epochs=50,batch_size=128,validation_data=(x_test,y_test))


以上模型在同样的GPU上达到了98.42%的验证精度。所以,就像我们在一开始猜测的那样,结果是相同的。

 

五、结语


如果这是你用R构建的第一个深度学习模型,我希望你很享受这个过程。使用很简单的代码,你就可以对手写数值进行精确度达到98%的分类。这应该可以给你足够的动力让你在机器学习的领域探索。


如果你已经在Python中使用过keras深度学习框架,那么你会发现R中keras框架的句式和结构跟其在Python中非常相似。事实上,R中的keras安装包创造了一个conda环境而且安装了在该环境下运行keras所需要的所有东西。但是,更让我兴奋的是:看到现在数据科学家们使用R构建有关现实生活的深度学习模型。就像有句话说的一样,竞争永不停歇。


原文发布时间为:2017-08-03 

本文作者:NSS

本文来自云栖社区合作伙伴“数据派THU”,了解相关信息可以关注“数据派THU”微信公众号

相关实践学习
在云上部署ChatGLM2-6B大模型(GPU版)
ChatGLM2-6B是由智谱AI及清华KEG实验室于2023年6月发布的中英双语对话开源大模型。通过本实验,可以学习如何配置AIGC开发环境,如何部署ChatGLM2-6B大模型。
相关文章
|
3月前
|
机器学习/深度学习 数据可视化 算法
深度学习模型结构复杂、参数众多,如何更直观地深入理解你的模型?
深度学习模型虽应用广泛,但其“黑箱”特性导致可解释性不足,尤其在金融、医疗等敏感领域,模型决策逻辑的透明性至关重要。本文聚焦深度学习可解释性中的可视化分析,介绍模型结构、特征、参数及输入激活的可视化方法,帮助理解模型行为、提升透明度,并推动其在关键领域的安全应用。
367 0
|
2月前
|
机器学习/深度学习 存储 PyTorch
Neural ODE原理与PyTorch实现:深度学习模型的自适应深度调节
Neural ODE将神经网络与微分方程结合,用连续思维建模数据演化,突破传统离散层的限制,实现自适应深度与高效连续学习。
155 3
Neural ODE原理与PyTorch实现:深度学习模型的自适应深度调节
|
1月前
|
机器学习/深度学习 数据采集 人工智能
深度学习实战指南:从神经网络基础到模型优化的完整攻略
🌟 蒋星熠Jaxonic,AI探索者。深耕深度学习,从神经网络到Transformer,用代码践行智能革命。分享实战经验,助你构建CV、NLP模型,共赴二进制星辰大海。
|
2月前
|
机器学习/深度学习 数据采集 传感器
【WOA-CNN-LSTM】基于鲸鱼算法优化深度学习预测模型的超参数研究(Matlab代码实现)
【WOA-CNN-LSTM】基于鲸鱼算法优化深度学习预测模型的超参数研究(Matlab代码实现)
210 0
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
AI 基础知识从 0.3 到 0.4——如何选对深度学习模型?
本系列文章从机器学习基础出发,逐步深入至深度学习与Transformer模型,探讨AI关键技术原理及应用。内容涵盖模型架构解析、典型模型对比、预训练与微调策略,并结合Hugging Face平台进行实战演示,适合初学者与开发者系统学习AI核心知识。
446 15
|
10月前
|
机器学习/深度学习 运维 安全
深度学习在安全事件检测中的应用:守护数字世界的利器
深度学习在安全事件检测中的应用:守护数字世界的利器
410 22
|
7月前
|
机器学习/深度学习 编解码 人工智能
计算机视觉五大技术——深度学习在图像处理中的应用
深度学习利用多层神经网络实现人工智能,计算机视觉是其重要应用之一。图像分类通过卷积神经网络(CNN)判断图片类别,如“猫”或“狗”。目标检测不仅识别物体,还确定其位置,R-CNN系列模型逐步优化检测速度与精度。语义分割对图像每个像素分类,FCN开创像素级分类范式,DeepLab等进一步提升细节表现。实例分割结合目标检测与语义分割,Mask R-CNN实现精准实例区分。关键点检测用于人体姿态估计、人脸特征识别等,OpenPose和HRNet等技术推动该领域发展。这些方法在效率与准确性上不断进步,广泛应用于实际场景。
1028 64
计算机视觉五大技术——深度学习在图像处理中的应用
|
11月前
|
机器学习/深度学习 传感器 数据采集
深度学习在故障检测中的应用:从理论到实践
深度学习在故障检测中的应用:从理论到实践
963 6
|
9月前
|
机器学习/深度学习 人工智能 运维
深度学习在流量监控中的革命性应用
深度学习在流量监控中的革命性应用
360 40
|
7月前
|
机器学习/深度学习 数据采集 存储
深度学习在DOM解析中的应用:自动识别页面关键内容区块
本文探讨了如何通过深度学习模型优化东方财富吧财经新闻爬虫的性能。针对网络请求、DOM解析与模型推理等瓶颈,采用代理复用、批量推理、多线程并发及模型量化等策略,将单页耗时从5秒优化至2秒,提升60%以上。代码示例涵盖代理配置、TFLite模型加载、批量预测及多线程抓取,确保高效稳定运行,为大规模数据采集提供参考。
187 0