送机器学习电子书——(TensorFlow)RNN入门

简介: 本文作者正在写自己的新书Machine Learning with TensorFlow,这篇博文只是他新书的一小部分,作者用简单的语言介绍了RNN,不用一个小例子介绍了如何使用Tensorflow中内置的RNN模型进行预测。

更多深度文章,请关注云计算频道:https://yq.aliyun.com/cloud


今天我们将研究一种名为循环神经网络的神经网络体系结构。它针对的不是自然语言数据,而是处理连续的时间数据,如股票市场价格。在本文结束之时,你将能够对时间序列数据中的模式进行建模,以对未来的值进行预测。

a1d1902a809c6ad3473e31d9ac71127cc4ee2ba0

1.上下文信息

回到学校,我的一个期中考试仅由真的或假的问题组成时。假设一半的答案是真的,而另一半则是假的。我想出了大部分问题的答案,剩下的是靠随机猜测。我做了一件聪明的事情,也许你也可以尝试一下这个策略。在计数了我的“真”的答案之后,我意识到它与“假”这个答案不成比例。于是我的大部分猜测是“假”的,这样就可以平衡分配。

这竟然是有效的。在那一时刻我感觉到我是狡猾的。这是什么样的判断力,使我们对自己的决定那么有信心,我们又如何将这种判断力给予神经网络?

这个问题的一个答案是使用上下文来回答问题。语境提示是可以提高机器学习算法性能的重要信号。例如,假设你想检查一个英文句子,并标记每个单词的词性。

傻傻的方法是将每个单词单独分类为“名词”,“形容词”等,而不确认其相邻的单词。单词“努力”被用作动词,但根据上下文,你也可以使用它作为一个形容词,单纯的词性标注是一个需要努力的问题。

更好的方法是考虑上下文信息。为了向神经网络提供上下文信息,我们可以使用称为循环神经网络的体系结构。

循环神经网络(RNN)简介

为了理解循环神经网络(RNN),我们首先来看一下图1所示的简单架构。它将输入向量Xt)作为输入,并在某个时间(t)产生一个向量Yt)的输出。中间的圆圈表示网络的隐藏层。

79e1314601bc1d8d2daa9477f1e1da0bfa0ea5bc

1分别具有标记为Xk)和Yk)的输入和输出层的神经网络

通过足够的输入/输出示例,你可以在TensorFlow中了解网络的参数。例如,我们将输入权重称为矩阵in,输出权重作为矩阵out。假设有一个隐藏层,称为向量Zt)。

如图2所示,神经网络的前半部分的特征在于函数Zt= Xt* W in,神经网络的后半部分形式为Yt= Zt* W out。同样,如果你愿意,整个神经网络可以是函数Yt=Xt* Win* W out

1a7944f8e7fd96be7b0cd64e302c141d391f64e4

2神经网络的隐藏层可以被认为是数据的隐藏,由其输入权重编码并输出权重解码。

在微调神经网络后,你可能希望在现实世界的场景中开始使用你所学习的模型。通常,这意味着你将多次调用该模型,甚至可能连续反复调用,如图3所示。

3755f72519c9d32b1dfde817a1bc8949ae8584c2

3通常,我们会运行相同的神经网络多次,而不考虑关于先前运行的隐藏状态。

在每个时间t,当调用学习模型时,这种体系结构不考虑关于以前运行的结果经验。就像预测股市走势一样,只看当前的数据。循环神经网络(RNN)与传统神经网络不同,因为它引入了转移权重W来跨越时间传递信息。图4显示了必须在RNN中学习的三个加权矩阵。

acda61bfd9b93480cd8262d84b0db6a9c4d4c550

4循环神经网络架构可以利用网络的先前状态来实现其优点。

理论上很好理解,但是你在这里必须要亲自动手做一下。让我们来吧!接下来将介绍如何使用TensorFlow的内置RNN模型。我们将使用这个RNN在现实世界的时间数据来预测未来!

2.实施循环神经网络

当我们实施RNN时,我们将使用TensorFlow。如图4所示,你不需要手动构建网络,因为TensorFlow库中已经支持一些鲁棒(robust)的RNN模型。

参考有关RNNTensorFlow库信息,请参见https://www.tensorflow.org/tutorials/recurrent

RNN的一种类型模型被称为长短期记忆网络(LSTM)。我觉得这是一个有趣的名字。它听起来也意味着:短期模式长期不会被遗忘。

LSTM的精确实现细节不在本文的范围之内。相信我,如果只学习LSTM模型会分散我们的注意力,因为它还没有确定的标准。

进一步阅读:为了了解如何从头开始执行LSTM,我建议你阅读以下的文章:https://apaszke.github.io/lstm-explained.html

我们现在开始我们的教程。首先从编写我们的代码开始,先创建一个新的文件,叫做simple_regression.py。导入相关的库,如步骤1所示。

步骤1:导入相关库

import numpy as np
import tensorflow as tf
from tensorflow.contrib import rnn

接着,定义一个类叫做SeriesPredictor。如步骤2所示,构造函数里面设置模型超参数,权重和成本函数。

步骤2:定义一个类及其构造函数

class SeriesPredictor:
     def __init__(self, input_dim, seq_size, hidden_dim=10):
        self.input_dim = input_dim //#A
        self.seq_size = seq_size  //#A
        self.hidden_dim = hidden_dim  //#A
        self.W_out = tf.Variable(tf.random_normal([hidden_dim, 1]),name='W_out') //#B
        self.b_out = tf.Variable(tf.random_normal([1]), name='b_out')  //#B
        self.x = tf.placeholder(tf.float32, [None, seq_size, input_dim]) //#B
        self.y = tf.placeholder(tf.float32, [None, seq_size]) //#B
        self.cost = tf.reduce_mean(tf.square(self.model() - self.y)) //#C
        self.train_op = tf.train.AdamOptimizer().minimize(self.cost) //#C
        self.saver = tf.train.Saver()  //#D

#A超参数。

#B权重变量和输入占位符。

#C成本优化器(cost optimizer)。

#D辅助操作。

接下来,我们使用TensorFlow的内置RNN模型,名为BasicLSTMCellLSTM单元的隐藏维度是通过时间的隐藏状态的维度。我们可以使用该rnn.dynamic_rnn函数处理这个单元格数据,以检索输出结果。步骤3详细介绍了如何使用TensorFlow来实现使用LSTM的预测模型。

步骤3:定义RNN模型

def model(self):
         """
         :param x: inputs of size [T, batch_size, input_size]
         :param W: matrix of fully-connected output layer weights
         :param b: vector of fully-connected output layer biases
         """
         cell = rnn.BasicLSTMCell(self.hidden_dim)  #A
         outputs, states = tf.nn.dynamic_rnn(cell, self.x, dtype=tf.float32) #B
         num_examples = tf.shape(self.x)[0]
         W_repeated = tf.tile(tf.expand_dims(self.W_out, 0), [num_examples, 1, 1])#C
         out = tf.matmul(outputs, W_repeated) + self.b_out
         out = tf.squeeze(out)
         return out

#A创建一个LSTM单元。

#B运行输入单元,获取输出和状态的张量。

#C将输出层计算为完全连接的线性函数。

通过定义模型和成本函数,我们现在可以实现训练函数,该函数学习给定示例输入/输出对的LSTM权重。如步骤4所示,你打开会话并重复运行优化器。

另外,你可以使用交叉验证来确定训练模型的迭代次数。在这里我们假设固定数量的epocs

训练后,将模型保存到文件中,以便稍后加载使用。

步骤4:在一个数据集上训练模型

def train(self, train_x, train_y):
         with tf.Session() as sess:
             tf.get_variable_scope().reuse_variables()
             sess.run(tf.global_variables_initializer())
             for i in range(1000):  #A
               		mse = sess.run([self.train_op, self.cost], feed_dict={self.x: train_x, self.y: train_y})
                 if i % 100 == 0:
                     print(i, mse)
             save_path = self.saver.save(sess, 'model.ckpt')
             print('Model saved to {}'.format(save_path))

#A训练1000

我们的模型已经成功地学习了参数。接下来,我们想评估利用其他数据来评估以下预测模型的性能。步骤5加载已保存的模型,并通过馈送一些测试数据以此来运行模型。如果学习的模型在测试数据上表现不佳,那么我们可以尝试调整LSTM单元格的隐藏维数。

步骤5:测试学习的模型

def test(self, test_x):
         with tf.Session() as sess:
             tf.get_variable_scope().reuse_variables()
             self.saver.restore(sess, './model.ckpt')
             output = sess.run(self.model(), feed_dict={self.x: test_x})
             print(output)

但为了完善自己的工作,让我们组成一些数据,并尝试训练预测模型。在步骤6中,我们将创建输入序列,称为train_x,和相应的输出序列,称为train_y

步骤6训练并测试一些虚拟数据

if __name__ == '__main__':
     predictor = SeriesPredictor(input_dim=1, seq_size=4, hidden_dim=10)
     train_x = [[[1], [2], [5], [6]],
                [[5], [7], [7], [8]],
                [[3], [4], [5], [7]]]
     train_y = [[1, 3, 7, 11],
                [5, 12, 14, 15],
                [3, 7, 9, 12]]
     predictor.train(train_x, train_y)
       test_x = [[[1], [2], [3], [4]],  #A
               [[4], [5], [6], [7]]]  #B
     predictor.test(test_x)

#A预测结果应为1357

#B预测结果应为491113

你可以将此预测模型视为黑盒子,并用现实世界的时间数据进行测试。

这篇博文只是我新书的一小部分,如果你想要学习更多的知识请移步:

Machine Learning with TensorFlow 

本文由北邮@爱可可-爱生活老师推荐,阿里云云栖社区组织整理。

文章原标题:《Recurrent Neural Networks

作者:Nishant Shukla  机器学习布道者

译者:虎说八道。审校:主题曲哥哥。

文章为简译,更为详细的内容,请查看原文


相关文章
|
6天前
|
机器学习/深度学习 PyTorch TensorFlow
【机器学习】基于tensorflow实现你的第一个DNN网络
【机器学习】基于tensorflow实现你的第一个DNN网络
17 0
|
2月前
|
机器学习/深度学习 人工智能 算法
【乐器识别系统】图像识别+人工智能+深度学习+Python+TensorFlow+卷积神经网络+模型训练
乐器识别系统。使用Python为主要编程语言,基于人工智能框架库TensorFlow搭建ResNet50卷积神经网络算法,通过对30种乐器('迪吉里杜管', '铃鼓', '木琴', '手风琴', '阿尔卑斯号角', '风笛', '班卓琴', '邦戈鼓', '卡萨巴', '响板', '单簧管', '古钢琴', '手风琴(六角形)', '鼓', '扬琴', '长笛', '刮瓜', '吉他', '口琴', '竖琴', '沙槌', '陶笛', '钢琴', '萨克斯管', '锡塔尔琴', '钢鼓', '长号', '小号', '大号', '小提琴')的图像数据集进行训练,得到一个训练精度较高的模型,并将其
41 0
【乐器识别系统】图像识别+人工智能+深度学习+Python+TensorFlow+卷积神经网络+模型训练
|
10天前
|
机器学习/深度学习 人工智能 算法
AI基础科普:机器学习入门与实践
本文全面介绍了机器学习及其在信用评分预测中的应用。首先概览了机器学习作为人工智能核心领域的重要性及其实现数字化转型的作用。接着定义了机器学习,并区分了监督、无监督和强化学习等主要类型。随后,通过一个具体的场景——利用Python与scikit-learn库构建逻辑回归模型来预测客户的信用等级,详细阐述了从数据准备、模型训练到评估的全过程。此外,还介绍了如何借助阿里云机器学习平台PAI进行云上的模型训练和部署。最后,通过总结逻辑回归算法和其在金融领域的应用,鼓励读者深入学习并实践AI技术,以适应快速发展的科技趋势。
51 2
AI基础科普:机器学习入门与实践
|
13天前
|
机器学习/深度学习 开发者 Python
Python 与 R 在机器学习入门中的学习曲线差异
【8月更文第6天】在机器学习领域,Python 和 R 是两种非常流行的编程语言。Python 以其简洁的语法和广泛的社区支持著称,而 R 则以其强大的统计功能和数据分析能力受到青睐。本文将探讨这两种语言在机器学习入门阶段的学习曲线差异,并通过构建一个简单的线性回归模型来比较它们的体验。
37 7
|
16天前
|
机器学习/深度学习 人工智能 TensorFlow
神经网络入门到精通:Python带你搭建AI思维,解锁机器学习的无限可能
【8月更文挑战第3天】踏入人工智能领域,神经网络是开启智慧之门的钥匙。它不仅是一种技术,更是模仿人脑学习与推理的思维方式。从理解神经元间的连接到构建神经网络的基本概念,再到使用Python与TensorFlow搭建手写数字识别模型,每一步都揭示着机器学习的奥秘。随着深入学习,我们将探索更高级的主题,比如深度神经网络、卷积神经网络和循环神经网络,以及如何优化模型性能。掌握背后的数学原理,将帮助我们设计更高效准确的模型。在这个旅程中,Python将是我们的得力助手,引领我们探索AI世界的无限可能。
23 2
|
22天前
|
机器学习/深度学习 人工智能 TensorFlow
🔥零基础逆袭!Python数据分析+机器学习:TensorFlow带你秒变AI大师
【7月更文挑战第29天】在这个数据驱动的时代,掌握Python与机器学习技能是进入AI领域的关键。即使从零开始,也能通过TensorFlow成为AI专家。
41 8
|
2天前
|
机器学习/深度学习 算法 TensorFlow
【人工智能】TensorFlow和机器学习概述
TensorFlow的性能优化将是持续的工作重点。这包括更高效的GPU和TPU支持、更快速的模型训练与推理、以及优化的内存使用。同时,随着硬件的发展,TensorFlow将不断优化其代码库以充分利用新型硬件的能力。
6 0
|
28天前
|
机器学习/深度学习 数据采集 人工智能
机器学习算法入门与实践
【7月更文挑战第22天】机器学习算法入门与实践是一个既充满挑战又极具吸引力的过程。通过掌握基础知识、理解常见算法、注重数据预处理和模型选择、持续学习新技术和参与实践项目,你可以逐步提高自己的机器学习技能,并在实际应用中取得优异的成绩。记住,机器学习是一个不断迭代和改进的过程,保持好奇心和耐心,你将在这个领域走得更远。
|
28天前
|
机器学习/深度学习 数据采集 数据可视化
Sklearn入门指南:构建你的第一个机器学习模型
【7月更文第22天】在数据科学与机器学习领域,Scikit-learn(简称sklearn)是一个广泛使用的Python库,以其简洁的API和丰富的功能集而著称。本指南将引领你从安装到使用sklearn构建你的第一个机器学习模型,以一个简单的线性回归任务为例,逐步深入理解这个强大的工具。
53 2
|
6天前
|
机器学习/深度学习 算法 数据挖掘
机器学习新手也能飞:Python+Scikit-learn让你轻松入门!
在数据驱动的时代,机器学习是推动科技进步和智能化生活的关键。Python以简洁的语法和强大的库支持,成为机器学习的理想语言。Scikit-learn作为Python的开源机器学习库,提供简单易用的API和丰富的算法,降低了学习门槛。通过Python结合Scikit-learn,即使是初学者也能快速上手,如使用鸢尾花数据集进行分类任务,体验从数据预处理到模型训练和评估的全过程,进而探索更多机器学习的可能性。
18 0