【机器学习PAI实践十二】机器学习实现男女声音识别分类(含语音特征提取数据和代码)

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,100CU*H 3个月
简介: 背景随着人工智能的算法发展,对于非结构化数据的处理能力越来越受到重视,这里面的关键一环就是语音数据的处理。目前,许多关于语音识别的应用案例已经影响着我们的生活,例如一些智能音箱中利用语音发送指令,一些搜索工具利用语音输出文本代替键盘录入。本文我们将针对语音识别中最简单的案例“男女声音”识别,结合本地的R工具以及机器学习PAI,为大家进行介绍。通过本案例,可以将任何用户

背景

随着人工智能的算法发展,对于非结构化数据的处理能力越来越受到重视,这里面的关键一环就是语音数据的处理。目前,许多关于语音识别的应用案例已经影响着我们的生活,例如一些智能音箱中利用语音发送指令,一些搜索工具利用语音输出文本代替键盘录入。

本文我们将针对语音识别中最简单的案例“男女声音”识别,结合本地的R工具以及机器学习PAI,为大家进行介绍。通过本案例,可以将任何用户的语音数据标记出性别,并且保持高准确率。我们把整个实验流程切分为两部分,第一部分是声音信号的特征提取,通过R的信号处理工具实现;第二部分通过机器学习PAI实现男女声音分类模型的训练,本实验需要事先积累男女声音的录音数据,本文已经提供处理好的3000条语音数据,文章末尾提供下载。

声音信号特征提取

语音数据与图像数据以及文本数据不同,如果经常使用K歌软件或者是语音合成软件,不难理解语音数据通常成信号状分布。

为了有效的通过算法处理这种波形数据,需要首先通过信号处理工具对语音信号进行处理。本文我们选用的是R语言的warbleR包,warbleR包含大量的频谱处理工具,可以通过其中的频谱处理函数提取出关于声音的以下特征信息,因为男生和女生在声音频率、振幅的方面一定有很大区别,所以要通过提取以下特征帮助我们进行分类:

接下来会讲解如何提取这些声音信号的特征:

1.安装R

首先安装R语言包,warbleR需要R的版本是3.2以上,这里强烈建议大家使用3.3.3版本(博主在使用3.4的时候遇到错误)。具体R的安装方式网上有很多介绍,这里就不详细介绍了。

2.安装warbleR

安装完R之后,进入R命令行,需要通过以下命令安装warbleR:

install.packages("warbleR")  

library(warbleR)  

这里需要注意的是镜像最好使用美国的默认镜像服务,需要翻*,不然很有可能会安装不成功,因为国内的镜像会缺少某些依赖包。

3.特征提取

首先把需要处理的录音数据(必须是wav格式)按照男声、女声分装在male和female两个文件夹中,然后执行笔者提供的R脚本代码(文末提供了下载链接)。需要将代码中以下两个文件路径改为自己建立的male以及female文件路径即可:

执行这个R脚本,就会将wav格式的声音文件转化为结构化数据,数据会存储为一个CSV文件。文件部分截图:

PAI训练男女声音分类模型

1.导入数据

将通过R处理后的数据导入PAI平台,也可以直接将文末提供的处理好的数据导入。具体方法可以看:https://help.aliyun.com/video_detail/54945.html

数据导入后,可以看到有20个特征以及1列label列,

2.建立分类模型

通过拖拉PAI平台的组件搭建实验,实验流程图:

  • voice_classify:为数据读入源
  • 拆分:将数据集拆分为训练集以及预测集
  • 线性支持向量机:通过SVM算法训练生成模型
  • 预测组件:通过模型对预测集预测
  • 混淆矩阵:用来评估

这是一个比较简单的二分类场景,具体也可以参看之前的一些文章:https://yq.aliyun.com/articles/54260

3.评估

最终“混淆矩阵”组件会显示如下图的分类评估:

通过混淆矩阵,可以看到男女声音的分类还是非常精准的。

总结

本文通过使用R脚本以及机器学习PAI实现了男女声音分类的案例,最终的准确率达到百分之九十八左右。在实际使用过程中,用户需要执行以下几步:
(1)首先积累需要分类的声音文件,数据越多越好,存储为wav格式。
(2)然后通过R脚本对打标好的声音文件进行特征提取。
(3)将处理后的数据上传PAI,建立分类模型即可。

PAI地址:https://data.aliyun.com/product/learn
企业服务咨询:https://survey.aliyun.com/survey/AMgL8_Pm5
数据下载(代码及数据来自warbleR社区开源提供):https://github.com/jimenbian/PAI_voice_classify
与作者讨论可以关注我的微信公众号“凡人机器学习”:

相关实践学习
使用PAI+LLaMA Factory微调Qwen2-VL模型,搭建文旅领域知识问答机器人
使用PAI和LLaMA Factory框架,基于全参方法微调 Qwen2-VL模型,使其能够进行文旅领域知识问答,同时通过人工测试验证了微调的效果。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
目录
相关文章
|
2月前
|
机器学习/深度学习 分布式计算 Java
Java 大视界 -- Java 大数据机器学习模型在遥感图像土地利用分类中的优化与应用(199)
本文探讨了Java大数据与机器学习模型在遥感图像土地利用分类中的优化与应用。面对传统方法效率低、精度差的问题,结合Hadoop、Spark与深度学习框架,实现了高效、精准的分类。通过实际案例展示了Java在数据处理、模型融合与参数调优中的强大能力,推动遥感图像分类迈向新高度。
|
4月前
|
机器学习/深度学习 人工智能 算法
PaperCoder:一种利用大型语言模型自动生成机器学习论文代码的框架
PaperCoder是一种基于多智能体LLM框架的工具,可自动将机器学习研究论文转化为代码库。它通过规划、分析和生成三个阶段,系统性地实现从论文到代码的转化,解决当前研究中代码缺失导致的可复现性问题。实验表明,PaperCoder在自动生成高质量代码方面显著优于基线方法,并获得专家高度认可。这一工具降低了验证研究成果的门槛,推动科研透明与高效。
297 19
PaperCoder:一种利用大型语言模型自动生成机器学习论文代码的框架
|
5月前
|
机器学习/深度学习 算法 数据挖掘
PyTabKit:比sklearn更强大的表格数据机器学习框架
PyTabKit是一个专为表格数据设计的新兴机器学习框架,集成了RealMLP等先进深度学习技术与优化的GBDT超参数配置。相比传统Scikit-Learn,PyTabKit通过元级调优的默认参数设置,在无需复杂超参调整的情况下,显著提升中大型数据集的性能表现。其简化API设计、高效训练速度和多模型集成能力,使其成为企业决策与竞赛建模的理想工具。
160 12
PyTabKit:比sklearn更强大的表格数据机器学习框架
|
7月前
|
机器学习/深度学习 人工智能 开发者
DeepSeek安装部署指南,基于阿里云PAI零代码,小白也能轻松搞定!
阿里云PAI平台支持零代码一键部署DeepSeek-V3和DeepSeek-R1大模型,用户可轻松实现从训练到部署再到推理的全流程。通过PAI Model Gallery,开发者只需简单几步即可完成模型部署,享受高效便捷的AI开发体验。具体步骤包括:开通PAI服务、进入控制台选择模型、一键部署并获取调用信息。整个过程简单快捷,极大降低了使用门槛。
1787 43
|
7月前
|
机器学习/深度学习 数据采集 人工智能
MATLAB在机器学习模型训练与性能优化中的应用探讨
本文介绍了如何使用MATLAB进行机器学习模型的训练与优化。MATLAB作为强大的科学计算工具,提供了丰富的函数库和工具箱,简化了数据预处理、模型选择、训练及评估的过程。文章详细讲解了从数据准备到模型优化的各个步骤,并通过代码实例展示了SVM等模型的应用。此外,还探讨了超参数调优、特征选择、模型集成等优化方法,以及深度学习与传统机器学习的结合。最后,介绍了模型部署和并行计算技巧,帮助用户高效构建和优化机器学习模型。
MATLAB在机器学习模型训练与性能优化中的应用探讨
|
7月前
|
机器学习/深度学习 人工智能 开发者
DeepSeek服务器繁忙?拒绝稍后再试!基于阿里云PAI实现0代码一键部署DeepSeek-V3和DeepSeek-R1大模型
阿里云PAI平台支持零代码一键部署DeepSeek-V3和DeepSeek-R1大模型,用户可轻松实现从训练到部署再到推理的全流程。通过PAI Model Gallery,开发者只需简单几步即可完成模型部署,享受高效便捷的AI开发体验。具体步骤包括开通PAI服务、进入控制台选择模型、一键部署并获取调用信息。整个过程无需编写代码,极大简化了模型应用的门槛。
360 7
|
6月前
|
机器学习/深度学习 传感器 数据采集
基于机器学习的数据分析:PLC采集的生产数据预测设备故障模型
本文介绍如何利用Python和Scikit-learn构建基于PLC数据的设备故障预测模型。通过实时采集温度、振动、电流等参数,进行数据预处理和特征提取,选择合适的机器学习模型(如随机森林、XGBoost),并优化模型性能。文章还分享了边缘计算部署方案及常见问题排查,强调模型预测应结合定期维护,确保系统稳定运行。
624 0
|
4月前
|
机器学习/深度学习 数据采集 人工智能
20分钟掌握机器学习算法指南
在短短20分钟内,从零开始理解主流机器学习算法的工作原理,掌握算法选择策略,并建立对神经网络的直观认识。本文用通俗易懂的语言和生动的比喻,帮助你告别算法选择的困惑,轻松踏入AI的大门。
|
10月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
814 6
|
5月前
|
机器学习/深度学习 存储 Kubernetes
【重磅发布】AllData数据中台核心功能:机器学习算法平台
杭州奥零数据科技有限公司成立于2023年,专注于数据中台业务,维护开源项目AllData并提供商业版解决方案。AllData提供数据集成、存储、开发、治理及BI展示等一站式服务,支持AI大模型应用,助力企业高效利用数据价值。

热门文章

最新文章