【机器学习PAI实践一】搭建心脏病预测案例

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,100CU*H 3个月
简介: 产品地址:https://data.aliyun.com/product/learn?spm=a21gt.99266.416540.102.OwEfx2一、背景心脏病是人类健康的头号杀手。全世界1/3的人口死亡是因心脏病引起的,而我国,每年有几十万人死于心脏病。 所以,如果可以通过提取人体相关的体侧指标,通过数据挖掘的方式来分析不同特征对于心脏病的影响,对于预测和

产品地址:https://data.aliyun.com/product/learn?spm=a21gt.99266.416540.102.OwEfx2

一、背景

心脏病是人类健康的头号杀手。全世界1/3的人口死亡是因心脏病引起的,而我国,每年有几十万人死于心脏病。 所以,如果可以通过提取人体相关的体侧指标,通过数据挖掘的方式来分析不同特征对于心脏病的影响,对于预测和预防心脏病将起到至关重要的作用。本文将会通过真实的数据,通过阿里云机器学习平台搭建心脏病预测案例。

二、数据集介绍

数据源: UCI开源数据集heart_disease
针对美国某区域的心脏病检查患者的体测数据,共303条数据。具体字段如下表:

字段名 含义 类型 描述
age 年龄 string 对象的年龄,数字表示
sex 性别 string 对象的性别,female和male
cp 胸部疼痛类型 string 痛感由重到无typical、atypical、non-anginal、asymptomatic
trestbps 血压 string 血压数值
chol 胆固醇 string 胆固醇数值
fbs 空腹血糖 string 血糖含量大于120mg/dl为true,否则为false
restecg 心电图结果 string 是否有T波,由轻到重为norm、hyp
thalach 最大心跳数 string 最大心跳数
exang 运动时是否心绞痛 string 是否有心绞痛,true为是,false为否
oldpeak 运动相对于休息的ST depression string st段压数值
slop 心电图ST segment的倾斜度 string ST segment的slope,程度分为down、flat、up
ca 透视检查看到的血管数 string 透视检查看到的血管数
thal 缺陷种类 string 并发种类,由轻到重norm、fix、rev
status 是否患病 string 是否患病,buff是健康、sick是患病

三、数据探索流程

数据挖掘流程如下:

整体实验流程:

1.数据预处理

数据预处理也叫作数据清洗,主要在数据进入算法流程前对数据进行去噪、填充缺失值、类型变换等操作。本次实验的输入数据包括14个特征和1个目标队列。需要解决的场景是根据用户的体检指标预测是否会患有心脏病,每个样本只有患病或不患病两种,是分类问题。因为本次分类实验选用的是线性模型逻辑回归,要求输入的特征都是double型的数据。
输入数据展示:

我们看到有很多数据是文字描述的,在数据预处理的过程中我们需要根据每个字段的含义将字符型转为数值。
1)二值类的数据
二值类的比较容易转换,如sex字段有两种表现形式female和male,我们可以将female表示成0,把male表示成1。
2)多值类的数据
比如cp字段,表示胸部的疼痛感,我们可以通过疼痛的由轻到重映射成0~3的数值。

数据的预处理通过sql脚本来实现,具体请参考SQL脚本-1组件,


select age,
(case sex when 'male' then 1 else 0 end) as sex,
(case cp when 'angina' then 0  when 'notang' then 1 else 2 end) as cp,
trestbps,
chol,
(case fbs when 'true' then 1 else 0 end) as fbs,
(case restecg when 'norm' then 0  when 'abn' then 1 else 2 end) as restecg,
thalach,
(case exang when 'true' then 1 else 0 end) as exang,
oldpeak,
(case slop when 'up' then 0  when 'flat' then 1 else 2 end) as slop,
ca,
(case thal when 'norm' then 0  when 'fix' then 1 else 2 end) as thal,
(case status  when 'sick' then 1 else 0 end) as ifHealth
from  ${t1};  

2.特征工程

特征工程主要是包括特征的衍生、尺度变化等。本例中有两个组件负责特征工程的部分。

1)过滤式特征选择
主要是通过这个组件判断每个特征对于结果的影响,通过信息熵和基尼系数来表示,可以通过查看评估报告来显示最终的结果。

2)归一化
因为本次实验选择的是通过逻辑回归二分类来进行模型训练,需要每个特征去除量纲的影响。归一化的作用是将每个特征的数值范围变为0到1之间。归一化的公式为result=(val-min)/(max-min)。
归一化结果:

3.模型训练和预测

本次实验是监督学习,因为我们已经知道每个样本是否患有心脏病,所谓监督学习就是已知结果来训练模型。解决的问题是预测一组用户是否患有心脏病。

1)拆分
首先通过拆分组件将数据分为两部分,本次实验按照训练集和预测集7:3的比例拆分。训练集数据流入逻辑回归二分类组件用来训练模型,预测集数据进入预测组件。

2)逻辑回归二分类
逻辑回归是一个线性模型,在这里通过计算结果的阈值实现分类。具体的算法详情推荐大家在网上或者书籍中自行了解。逻辑回归训练好的模型可以在模型页签中查看。

3)预测
预测组件的两个输入分别是模型和预测集。预测结果展示的是预测数据、真实数据、每组数据不同结果的概率。

4.评估

通过混淆矩阵组件可以评估模型的准确率等参数,

通过此组件可以方便的通过预测的准确性来评估模型。

四.总结

通过以上数据探索的流程我们可以得到以下的结论。

1)特征权重
我们可以通过过滤式特征选择得到每个特征对于结果的权重。

-可以看出thalach(心跳数)对于是否发生心脏病影响最大。
-性别对于心脏病没有影响
2)模型效果
通过上文提供的14个特征,可以达到百分之八十多的心脏病预测准确率。模型可以用来做预测,辅助医生预防和治疗心脏病。

五、其它

免费体验:阿里云数加机器学习平台

相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
目录
相关文章
|
20天前
|
机器学习/深度学习 传感器 运维
使用机器学习技术进行时间序列缺失数据填充:基础方法与入门案例
本文探讨了时间序列分析中数据缺失的问题,并通过实际案例展示了如何利用机器学习技术进行缺失值补充。文章构建了一个模拟的能源生产数据集,采用线性回归和决策树回归两种方法进行缺失值补充,并从统计特征、自相关性、趋势和季节性等多个维度进行了详细评估。结果显示,决策树方法在处理复杂非线性模式和保持数据局部特征方面表现更佳,而线性回归方法则适用于简单的线性趋势数据。文章最后总结了两种方法的优劣,并给出了实际应用建议。
57 7
使用机器学习技术进行时间序列缺失数据填充:基础方法与入门案例
|
7月前
|
机器学习/深度学习 算法 数据挖掘
机器学习之sklearn基础——一个小案例,sklearn初体验
机器学习之sklearn基础——一个小案例,sklearn初体验
174 6
|
7月前
|
机器学习/深度学习 算法
【阿旭机器学习实战】【30】二手车价格预估--KNN回归案例
【阿旭机器学习实战】【30】二手车价格预估--KNN回归案例
|
8月前
|
Java Python 开发者
Python 学习之路 01基础入门---【Python安装,Python程序基本组成】
线程池详解与异步任务编排使用案例-xian-cheng-chi-xiang-jie-yu-yi-bu-ren-wu-bian-pai-shi-yong-an-li
513 3
Python 学习之路 01基础入门---【Python安装,Python程序基本组成】
|
5月前
|
机器学习/深度学习 人工智能 数据处理
【人工智能】项目实践与案例分析:利用机器学习探测外太空中的系外行星
探测外太空中的系外行星是天文学和天体物理学的重要研究领域。随着望远镜观测技术的进步和大数据的积累,科学家们已经能够观测到大量恒星的光度变化,并尝试从中识别出由行星凌日(行星经过恒星前方时遮挡部分光线)引起的微小亮度变化。然而,由于数据量巨大且信号微弱,传统方法难以高效准确地识别所有行星信号。因此,本项目旨在利用机器学习技术,特别是深度学习,从海量的天文观测数据中自动识别和分类系外行星的信号。这要求设计一套高效的数据处理流程、构建适合的机器学习模型,并实现自动化的预测和验证系统。
91 1
【人工智能】项目实践与案例分析:利用机器学习探测外太空中的系外行星
|
4月前
|
机器学习/深度学习 人工智能 算法
利用机器学习预测股市趋势:一个实战案例
【9月更文挑战第5天】在这篇文章中,我们将探索如何使用机器学习技术来预测股市趋势。我们将通过一个简单的Python代码示例来演示如何实现这一目标。请注意,这只是一个入门级的示例,实际应用中可能需要更复杂的模型和更多的数据。
|
8月前
|
Python
Python学习之路 02 之分支结构
Python学习之路 02 之分支结构
501 0
Python学习之路 02 之分支结构
|
8月前
|
Java
线程池详解与异步任务编排使用案例-xian-cheng-chi-xiang-jie-yu-yi-bu-ren-wu-bian-pai-shi-yong-an-li
线程池详解与异步任务编排使用案例-xian-cheng-chi-xiang-jie-yu-yi-bu-ren-wu-bian-pai-shi-yong-an-li
94 0
|
5月前
|
机器学习/深度学习 存储 分布式计算
Hadoop与机器学习的融合:案例研究
【8月更文第28天】随着大数据技术的发展,Hadoop已经成为处理大规模数据集的重要工具。同时,机器学习作为一种数据分析方法,在各个领域都有着广泛的应用。本文将介绍如何利用Hadoop处理大规模数据集,并结合机器学习算法来挖掘有价值的信息。我们将通过一个具体的案例研究——基于用户行为数据预测用户留存率——来展开讨论。
361 0
|
7月前
|
机器学习/深度学习 数据可视化 算法
【阿旭机器学习实战】【29】产品广告投放实战案例---线性回归
【阿旭机器学习实战】【29】产品广告投放实战案例---线性回归