【机器学习PAI实践六】金融贷款发放预测

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,5000CU*H 3个月
简介: 一、背景很多农民因为缺乏资金,在每年耕种前会向相关机构申请贷款来购买种地需要的物资,等丰收之后偿还。农业贷款发放问题是一个典型的数据挖掘问题。贷款发放人通过往年的数据,包括贷款人的年收入、种植的作物种类、历史借贷信息等特征来构建经验模型,通过这个模型来预测受贷人的还款能力。 本文借助真实的农业贷款业务场景,利用回归算法解决贷款发放业务。 线性回归,是利用数理统计中回归分

一、背景

很多农民因为缺乏资金,在每年耕种前会向相关机构申请贷款来购买种地需要的物资,等丰收之后偿还。农业贷款发放问题是一个典型的数据挖掘问题。贷款发放人通过往年的数据,包括贷款人的年收入、种植的作物种类、历史借贷信息等特征来构建经验模型,通过这个模型来预测受贷人的还款能力。
本文借助真实的农业贷款业务场景,利用回归算法解决贷款发放业务。 线性回归,是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,运用十分广泛。本文通过农业贷款的历史发放情况,预测是否给预测集的用户发放他们需要的金额的贷款。

二、数据集介绍

具体字段如下:

字段名 含义 类型 描述
id 数据唯一标识符 string
name 用户名 string
region 用户所属地区 string 从北到南排列
farmsize 拥有土地大小 double 土地面积
rainfall 降雨量 double 降雨量
landquality 土地质量 double 土地质量数值越大越好
farmincome 收入 double 年收入
maincrop 种植作物 string 种植作物的种类
claimtype 贷款类型 string 两种
claimvalue 贷款金额 double 贷款金额

数据截图:

三、数据探索流程

首先,实验流程图:

1.数据源

数据的输入有两部分,贷款训练集用来进行回归模型的训练,共二百条数据,是历史贷款数据,包括一些farmsize、rainfall等特征,claimvalue是贷款收回的金额。贷款预测集是今年申请贷款者,claimvalue是农民申请的贷款金额,共71人。我们通过已有的二百多条历史数据,预测给七十一人中的哪些申请贷款人发放贷款。

2.特征工程

将一些字符串类型的数据,根据他们的含义映射成数字。比如说region字段,我们将其中的north、middle、south按照从北到南的顺序分别映射成0、1、2。然后通过类型转换将字段转换成double类型,这样就可以进行下面的回归计算了。

如下图:

3.回归及预测

线性回归组件对于历史数据训练并生成回归模型,在预测组件中利用回归模型对于预测集数据进行了预测。通过合并列组件将用户ID、预测值、申请的贷款值合并。预测值表示的是用户的还贷能力(预期可以归还的金额)。

4.回归模型评估

通过回归模型评估组件对于回归模型进行评估。

5.发放贷款人

通过过滤与映射组件筛选出可以获得贷款的人,这里的业务逻辑是针对每个客户,如果他被预测得到的还款能力大于他申请贷款的金额,就对他发放贷款。

四、其它

关注作者微信公众号:

参与讨论:云栖社区公众号

免费体验:阿里云数加机器学习平台

相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
目录
相关文章
|
4月前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习在金融风控中的应用
【7月更文挑战第31天】随着科技的飞速发展,机器学习技术已广泛应用于各行各业,尤其在金融风控领域展现出巨大潜力。本文将深入探讨机器学习如何革新传统的金融风险评估模型,通过案例分析展示其在实际应用中的效果,并讨论面临的挑战与未来发展方向。
|
1月前
|
机器学习/深度学习 数据采集 自然语言处理
机器学习【金融风险与风口评估及其应用】
机器学习【金融风险与风口评估及其应用】
80 6
|
1月前
|
机器学习/深度学习 算法 搜索推荐
机器学习及其应用领域【金融领域】
机器学习及其应用领域【金融领域】
46 5
|
2月前
|
机器学习/深度学习 算法 数据挖掘
Python数据分析革命:Scikit-learn库,让机器学习模型训练与评估变得简单高效!
在数据驱动时代,Python 以强大的生态系统成为数据科学的首选语言,而 Scikit-learn 则因简洁的 API 和广泛的支持脱颖而出。本文将指导你使用 Scikit-learn 进行机器学习模型的训练与评估。首先通过 `pip install scikit-learn` 安装库,然后利用内置数据集进行数据准备,选择合适的模型(如逻辑回归),并通过交叉验证评估其性能。最终,使用模型对新数据进行预测,简化整个流程。无论你是新手还是专家,Scikit-learn 都能助你一臂之力。
138 8
|
3月前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习在金融欺诈检测中的应用
【8月更文挑战第30天】 随着金融科技的迅猛发展,机器学习技术在保障交易安全和打击金融欺诈中扮演着越来越重要的角色。本文将深入探讨机器学习模型在识别和预防金融欺诈方面的应用,并分析其优势与面临的挑战。通过对比传统方法,我们突出了机器学习在处理大数据、提高检测速度和精度方面的独特价值。同时,文中还将介绍几种常用的算法和模型,以及它们在实际场景中的运用情况。最后,本文提出了未来发展趋势和需要解决的关键问题。
|
3月前
|
机器学习/深度学习 数据采集 人工智能
机器学习在金融领域的应用及其挑战
【8月更文挑战第18天】本文将探讨机器学习技术在金融行业中的运用,以及在实际应用过程中遇到的挑战和问题。我们将从算法选择、数据处理、模型解释性及伦理法规四个方面进行详细讨论,并给出相应的解决建议。
73 1
|
3月前
|
机器学习/深度学习 数据采集 算法
探索机器学习在金融风控中的应用与挑战
【8月更文挑战第10天】随着金融科技的迅速发展,机器学习技术被广泛应用于金融服务领域,尤其是风险控制。本文深入探讨了机器学习在金融风控中的角色,分析了其在信用评分、欺诈检测等方面的应用,并指出了实施过程中面临的数据质量、模型解释性、法规遵从等挑战。文章旨在为金融机构提供机器学习应用的参考框架和应对策略,以增强风险管理能力。
57 7
|
3月前
|
机器学习/深度学习 API 网络架构
"解锁机器学习超级能力!Databricks携手Mlflow,让模型训练与部署上演智能风暴,一触即发,点燃你的数据科学梦想!"
【8月更文挑战第9天】机器学习模型的训练与部署流程复杂,涵盖数据准备、模型训练、性能评估及部署等步骤。本文详述如何借助Databricks与Mlflow的强大组合来管理这一流程。首先需在Databricks环境内安装Mlflow库。接着,利用Mlflow跟踪功能记录训练过程中的参数与性能指标。最后,通过Mlflow提供的模型服务功能,采用REST API或Docker容器等方式部署模型。这一流程充分利用了Databricks的数据处理能力和Mlflow的生命周期管理优势。
151 7
|
3月前
|
机器学习/深度学习 运维 算法
【阿里天池-医学影像报告异常检测】3 机器学习模型训练及集成学习Baseline开源
本文介绍了一个基于XGBoost、LightGBM和逻辑回归的集成学习模型,用于医学影像报告异常检测任务,并公开了达到0.83+准确率的基线代码。
71 9
|
3月前
|
机器学习/深度学习 自然语言处理 算法
探索机器学习在金融领域的革命性应用
本文深入探讨了机器学习技术在金融行业的广泛应用,并分析了其对金融市场的深远影响。从算法交易到信用风险评估,再到智能客户服务,机器学习技术正在重塑金融服务的方方面面。文章通过具体案例展示了机器学习如何提高效率、降低成本并增强客户体验,同时也讨论了实施这些技术时所面临的挑战和未来的发展趋势。
下一篇
无影云桌面