中国人工智能学会通讯——电子商务中的个性化推荐技术剖析 3. 活动会场的个性化方案

简介:

3. 活动会场的个性化方案

电子商务中的一大特定就是营销活动频繁,基本是每月都有,当然重头戏就是每年的“双11”购物节。“双11”中最能体现个性化推荐能力的莫过于淘宝/天猫的双11”主会场。2015年,基于三层推荐系统的架构,创造性地提出了“双11”主会场个性化方案(即“天坑一号”)项目,极大地降低了会场流失率,促进了成交转化。

“天坑一号”包括三个层次(见图3),即楼层顺序个性化、楼层内坑位个性化和坑位入口图素材个性化,自顶向下,在用户体验上形成一套完整的方案。其中楼层顺序个性化使得女神看到的楼层顺序可能是女装、美妆、天猫国际等;欧巴看到的楼层顺序可能是男装、旅行、数码等。楼层内坑位内容个性化,使得在同一个楼层内,不同用户看到的商品或店铺是不同的,比如同样都是美食控,喜欢辣味的用户可能看见麻辣牛肉干,喜欢甜味的用户则是巧克力。坑位内容素材个性化,使得同一个楼层、同一个坑位,即便算法预测两个用户都需要巧克力,但一个喜欢费列罗、一个喜欢德芙,也会在入口图上展示不同的品牌。这三级个性化中涉及到多策略推荐算法、排序学习、合图技术等多团队协作,时间紧任务重,是多团队辛勤工作、紧密协作的心血结晶。

image

在2016年“双11”中,面对更为复杂的个性化需求,全面升级后的个性化推荐在2016“双11主”会场得到了完美的展现。如图4所示,2016年的“双十一”主会场与2015年的“天坑一号”主会场极其相似。其中,在主会场中使用的最具代表性的技术包括将GBDT+FTRL、Wide & Deep Learning用于在线模型训练,以及实时预测上。GBDT+FTRL的思路是通过GBDT模型对原始特征进行抽取,获得了线性相关性更强的组合特征,并配合FTRL模型在线学习这些特征的权重,生成了快速更新的在线模型。而Wide & Deep Learning则是将当下最火热的深度学习技术融入到传统的个性化推荐算法中,使得个性化排序模型同时捕捉用户中长期,以及实时的偏好特征,准确地向用户推荐他们喜好的内容。个性化推荐能够更好地适应业务的多样性。经过2016年“双11”的洗礼,我们相信这些新技术为个性化推荐的未来持续发展打下了坚实的基础。

image

个性化推荐是一门实践性极强的学科,在移动互联网电子商务中的应用处于起步阶段,还有非常多有价值的问题有待深入,如推荐的惊喜性如何量化、交互式产品与算法的协同设计、长中短期业务指标的平衡等,以及与经济学博弈相机结合,满足用户需求的同时对卖家的效用也能最大化等问题,充满了挑战和希望。我们以上述若干实例,向读者抛砖引玉,鼓励大家打开思路,踊跃投身到推荐新时代的学习、研究、应用中去。

image

相关文章
|
9月前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能技术的探讨
人工智能的概念,人工智能的发展,人工智能的各种学派,人工智能的应用领域
402 4
|
9月前
|
人工智能 语音技术
推动人工智能技术和产业变革,啥是核心驱动力?生成式人工智能认证(GAI认证)揭秘答案
人工智能(AI)正以前所未有的速度重塑世界,其发展离不开领军人才与创新生态的支持。文章探讨了AI领军人才的核心特质及培养路径,强调构建产学研深度融合的创新生态,并通过教育变革与GAI认证提升全民AI素养,为技术与产业变革提供持续动力。这不仅是推动社会高质量发展的关键,也为个人与企业带来了更多机遇。
|
9月前
|
机器学习/深度学习 人工智能 自然语言处理
生成式人工智能的价值回归:重塑技术、社会与个体的发展轨迹
生成式人工智能(Generative AI)正以前所未有的速度重塑社会面貌。它从单一决策工具转变为创造性生产力引擎,推动知识生产、艺术创作与科学研究的发展。同时,其广泛应用引发社会生产力和生产关系的深刻变革,带来就业结构变化与社会公平挑战。此外,生成式AI还面临伦理法律问题,如透明性、责任归属及知识产权等。培生公司推出的生成式AI认证项目,旨在培养专业人才,促进技术与人文融合,助力技术可持续发展。总体而言,生成式AI正从工具属性向赋能属性升华,成为推动社会进步的新引擎。
|
9月前
|
人工智能 自然语言处理 API
MCP与A2A协议比较:人工智能系统互联与协作的技术基础架构
本文深入解析了人工智能领域的两项关键基础设施协议:模型上下文协议(MCP)与代理对代理协议(A2A)。MCP由Anthropic开发,专注于标准化AI模型与外部工具和数据源的连接,降低系统集成复杂度;A2A由Google发布,旨在实现不同AI代理间的跨平台协作。两者虽有相似之处,但在设计目标与应用场景上互为补充。文章通过具体示例分析了两种协议的技术差异及适用场景,并探讨了其在企业工作流自动化、医疗信息系统和软件工程中的应用。最后,文章强调了整合MCP与A2A构建协同AI系统架构的重要性,为未来AI技术生态系统的演进提供了方向。
1435 62
|
9月前
|
数据采集 人工智能 缓存
深挖“全栈智算”之力 中兴通讯开启AI普惠新纪元
深挖“全栈智算”之力 中兴通讯开启AI普惠新纪元
292 1
|
10月前
|
人工智能 算法 搜索推荐
人工智能技术对未来就业的影响
人工智能大模型技术正在重塑全球就业市场,但其核心是"增强"而非"取代"人类工作。虽然AI在数据处理、模式识别等标准化任务上表现出色,但在创造力、情感交互和复杂决策等人类专属领域仍存在明显局限。各行业呈现差异化转型:IT领域人机协同编程成为常态,金融业基础分析岗位减少但复合型人才需求激增,医疗行业AI辅助诊断普及但治疗决策仍依赖医生,制造业工人转向技术管理,创意产业中人类聚焦高端设计。未来就业市场将形成人机协作新生态,要求个人培养创造力、情商等AI难以替代的核心能力,企业重构工作流程。AI时代将推动人类向更高价值的认知活动跃升,实现人机优势互补的协同发展。
1213 2
|
机器学习/深度学习 人工智能 自然语言处理
深入理解人工智能中的深度学习技术及其最新进展
深入理解人工智能中的深度学习技术及其最新进展
1518 33
|
机器学习/深度学习 人工智能 自然语言处理
人工智能与未来医疗:AI技术在疾病诊断中的应用前景####
本文探讨了人工智能(AI)在现代医疗领域,尤其是疾病诊断方面的应用潜力和前景。随着技术的不断进步,AI正逐渐改变传统医疗模式,提高诊断的准确性和效率。通过分析当前的技术趋势、具体案例以及面临的挑战,本文旨在为读者提供一个全面的视角,理解AI如何塑造未来医疗的面貌。 ####
|
机器学习/深度学习 人工智能 算法
人工智能平台年度技术趋势
阿里云智能集团研究员林伟在年度技术趋势演讲中,分享了AI平台的五大方面进展。首先,他介绍了大规模语言模型(LLM)训练中的挑战与解决方案,包括高效故障诊断和快速恢复机制。其次,探讨了AI应用和服务的普及化,强调通过优化调度降低成本,使AI真正惠及大众。第三,提出了GreenAI理念,旨在提高AI工程效率,减少能源消耗。第四,讨论了企业级能力,确保数据和模型的安全性,并推出硬件到软件的全面安全方案。最后,介绍了整合多项核心技术的Pai Prime框架,展示了阿里云在自主可控AI核心框架下的整体布局和发展方向。
|
机器学习/深度学习 人工智能 自然语言处理
深入理解人工智能中的深度学习技术及其最新进展
深入理解人工智能中的深度学习技术及其最新进展
637 14

热门文章

最新文章