《中国人工智能学会通讯》——11.13 三维目标检测与模型重建一体化算法

简介: 本节书摘来自CCAI《中国人工智能学会通讯》一书中的第11章,第11.13节, 更多章节内容可以访问云栖社区“CCAI”公众号查看。

11.13 三维目标检测与模型重建一体化算法

学界在三维目标检测识别和三维模型重建两个方向均开展了大量研究,现有三维目标识别算法大多采用基于模型的策略,需要预先得到感兴趣目标的三维模型[7] ,而现有三维模型重建算法均只应用于单个物体的点云,尚无法从多个包含背景的场景点云中重建出独立的三维物体。针对此,本文在假定目标在场景中存在移动的前提下,提出一种新的三维模型重建、目标检测及姿态估计一体化算法[8] 。该算法可在无先验知识的情况下检测出场景中的未知目标,并从包含背景的点云中完成目标的三维模型重建。

给定点云集 {S 1,S2 ,…,S N },本算法的目的在于检测出场景中多次出现的目标并完成该目标的三维模型重建。该算法共包含模型初始化、模型生长 , 以及目标检测与模型重建三个模块,如图 9 所示。首先,给定输入点云集 ( 见图 9(a)),提取每幅点云 S n的 RoPS 局部特征描述子;然后,通过两幅点云之间的特征匹配和点云配准构建某个未知目标 O k 的初始模型 M k ( 见图 9(b))。通过将模型 M k 与未验证的点云进行配准从而实现模型 M k 的生长和迭代更新 ( 见图9(c)),并赋予模型 M k 中的每个点一个置信度,且该置信度随模型生长而不断迭代更新。当输入点云集合中的所有点云均得到验证后,利用置信度将杂散点剔除从而得到目标的精模型 (见图9(d))。同时,点云 S n 中能与该精模型实现配准的点即被认为是目标 O k 存在于场景 S n 中的点,进而将这些点从点云S n 中分割出来,从而实现了目标检测 ( 见图 9(d)),并可得到场景中该目标相对于模型的姿态。因此,该过程同时实现了对目标 O k 的三维模型重建、目标检测与姿态估计。当得到一个三维模型后,重复上述过程以获得下一个目标的三维模型,直到不能得到任何模型为止。image
该算法依据未知目标的重现度来确定目标的类别及模型,可实现无模型的三维目标检测,并从存在背景干扰的场景点云集合中重建出未知目标的三维模型,进而同时实现三维目标的模型重建、目标检测与姿态估计。在 UWA 数据集上的实验结果表明,本文算法能获得较高的检测率和较高的模型重建与姿态估计精度。

相关文章
|
2月前
|
算法 数据可视化 数据挖掘
基于EM期望最大化算法的GMM参数估计与三维数据分类系统python源码
本内容展示了基于EM算法的高斯混合模型(GMM)聚类实现,包含完整Python代码、运行效果图及理论解析。程序使用三维数据进行演示,涵盖误差计算、模型参数更新、结果可视化等关键步骤,并附有详细注释与操作视频,适合学习EM算法与GMM模型的原理及应用。
|
3月前
|
机器学习/深度学习 运维 监控
实时异常检测实战:Flink+PAI 算法模型服务化架构设计
本文深入探讨了基于 Apache Flink 与阿里云 PAI 构建的实时异常检测系统。内容涵盖技术演进、架构设计、核心模块实现及金融、工业等多领域实战案例,解析流处理、模型服务化、状态管理等关键技术,并提供性能优化与高可用方案,助力企业打造高效智能的实时异常检测平台。
225 1
|
2月前
|
存储 监控 算法
基于跳表数据结构的企业局域网监控异常连接实时检测 C++ 算法研究
跳表(Skip List)是一种基于概率的数据结构,适用于企业局域网监控中海量连接记录的高效处理。其通过多层索引机制实现快速查找、插入和删除操作,时间复杂度为 $O(\log n)$,优于链表和平衡树。跳表在异常连接识别、黑名单管理和历史记录溯源等场景中表现出色,具备实现简单、支持范围查询等优势,是企业网络监控中动态数据管理的理想选择。
56 0
|
7月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
本研究基于MATLAB 2022a,使用GRU网络对QAM调制信号进行检测。QAM是一种高效调制技术,广泛应用于现代通信系统。传统方法在复杂环境下性能下降,而GRU通过门控机制有效提取时间序列特征,实现16QAM、32QAM、64QAM、128QAM的准确检测。仿真结果显示,GRU在低SNR下表现优异,且训练速度快,参数少。核心程序包括模型预测、误检率和漏检率计算,并绘制准确率图。
174 65
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
|
3月前
|
机器学习/深度学习 监控 算法
面向办公室屏幕监控系统的改进型四叉树屏幕变化检测算法研究
本文提出一种改进型四叉树数据结构模型,用于优化办公室屏幕监控系统。通过动态阈值调节、变化优先级索引及增量更新策略,显著降低计算复杂度并提升实时响应能力。实验表明,该算法在典型企业环境中将屏幕变化检测效率提升40%以上,同时减少资源消耗。其应用场景涵盖安全审计、工作效能分析及远程协作优化等,未来可结合深度学习实现更智能化的功能。
65 0
|
5月前
|
数据采集 人工智能 缓存
深挖“全栈智算”之力 中兴通讯开启AI普惠新纪元
深挖“全栈智算”之力 中兴通讯开启AI普惠新纪元
129 1
|
11月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于MSER和HOG特征提取的SVM交通标志检测和识别算法matlab仿真
### 算法简介 1. **算法运行效果图预览**:展示算法效果,完整程序运行后无水印。 2. **算法运行软件版本**:Matlab 2017b。 3. **部分核心程序**:完整版代码包含中文注释及操作步骤视频。 4. **算法理论概述**: - **MSER**:用于检测显著区域,提取图像中稳定区域,适用于光照变化下的交通标志检测。 - **HOG特征提取**:通过计算图像小区域的梯度直方图捕捉局部纹理信息,用于物体检测。 - **SVM**:寻找最大化间隔的超平面以分类样本。 整个算法流程图见下图。
|
6月前
|
机器学习/深度学习 存储 算法
基于MobileNet深度学习网络的活体人脸识别检测算法matlab仿真
本内容主要介绍一种基于MobileNet深度学习网络的活体人脸识别检测技术及MQAM调制类型识别方法。完整程序运行效果无水印,需使用Matlab2022a版本。核心代码包含详细中文注释与操作视频。理论概述中提到,传统人脸识别易受非活体攻击影响,而MobileNet通过轻量化的深度可分离卷积结构,在保证准确性的同时提升检测效率。活体人脸与非活体在纹理和光照上存在显著差异,MobileNet可有效提取人脸高级特征,为无线通信领域提供先进的调制类型识别方案。
|
6月前
|
算法 安全 数据安全/隐私保护
基于BBO生物地理优化的三维路径规划算法MATLAB仿真
本程序基于BBO生物地理优化算法,实现三维空间路径规划的MATLAB仿真(测试版本:MATLAB2022A)。通过起点与终点坐标输入,算法可生成避障最优路径,并输出优化收敛曲线。BBO算法将路径视为栖息地,利用迁移和变异操作迭代寻优。适应度函数综合路径长度与障碍物距离,确保路径最短且安全。程序运行结果完整、无水印,适用于科研与教学场景。
|
7月前
|
机器学习/深度学习 算法 安全
基于深度学习的路面裂缝检测算法matlab仿真
本项目基于YOLOv2算法实现高效的路面裂缝检测,使用Matlab 2022a开发。完整程序运行效果无水印,核心代码配有详细中文注释及操作视频。通过深度学习技术,将目标检测转化为回归问题,直接预测裂缝位置和类别,大幅提升检测效率与准确性。适用于实时检测任务,确保道路安全维护。 简介涵盖了算法理论、数据集准备、网络训练及检测过程,采用Darknet-19卷积神经网络结构,结合随机梯度下降算法进行训练。

热门文章

最新文章