《中国人工智能学会通讯》——11.9 点云局部特征描述算法

简介: 本节书摘来自CCAI《中国人工智能学会通讯》一书中的第11章,第11.9节, 更多章节内容可以访问云栖社区“CCAI”公众号查看。

11.9 点云局部特征描述算法

在模式识别任务中,特征提取一直具有十分重要的作用。在三维计算机视觉领域,点云特征提取是点云配准、三维模型重建、三维形状检索、三维目标识别,以及三维生物特征识别等应用的基础。现有特征提取算法可分为全局特征和局部特征两大类[1] 。全局特征利用点云中所有点的信息构建得到,这类特征包含的信息较丰富,但同时对遮挡及背景干扰等十分敏感。而局部特征则首先在点云上检测一系列具有丰富信息的关键点,进而采用关键点局部邻域内的几何信息构建特征描述子,因此其对遮挡及背景干扰非常稳健。

一个良好的特征描述子应该具备以下几个基本条件:① 对物体刚性变换的不变性;② 较高的鉴别力;③ 较好的鲁棒性,对噪声、遮挡、分辨率变化,以及缺失点等常见干扰因素稳健。现有特征描述子难以同时满足上述三个要求,针对此,本文提出了一种高鉴别力且稳健的 RoPS 特征描述子[2] 。

RoPS 特征描述子示意图如图 1 所示,其基本生成过程如下所述。

(1) 在点云的每个关键点上构建一个局部参考坐标框架,并将局部表面上的点变换到该坐标框架下,以获得局部特征描述子对物体姿态变化的不变性,如图 1(a) 和 (b) 所示。

(2) 将关键点局部邻域点云 Q 绕 x 轴旋转一个角度 θ k ,得到旋转后的点云 Q(θ k ),如图 1(c) 所示。进而将点云 Q(θ k ) 投影到 xy、xz 和 yz 三个坐标平面上,以获得三个投影点云 i (θ k ),其中 i= 1, 2, 3。

(3) 获取每一个投影点云 i (θ k ) 的包围矩形,并将该包围矩形均匀划分成 M×M 个单元格 ( 如图1(d) 所示 ),统计落入每个单元格内的投影点数量从而获得分布矩阵 D( 如图 1(e) 所示 )。
image

(4) 得到分布矩阵 D 后,采用计算复杂度低但表达能力强的中心矩和香农熵等五个数学统计量来表征该矩阵中的信息。

(5) 为全面记录该局部表面的信息,将点云 Q绕 x 轴旋转多个角度,并将每个投影平面上得到的五维数学统计量组合成一个子特征 f x 。然后,将点云 Q 绕 y 轴和 z 轴旋转多个角度以分别得到子特征f y 和 f z 。最后,将所有子特征组合得到 RoPS 特征描述子。

采 用 Bologna 和 Photomesh 数 据 集 测 试 了RoPS 特征描述子的性能并与现有算法进行了充分对比,部分结果如图 2 所示。实验结果表明,RoPS特征描述子具有如下优点。

(1) 鉴别力强:RoPS 通过旋转投影实现从多个视角记录局部表面的“完整”信息,因而信息量丰富。

(2) 不变性:通过构建局部参考坐标框架实现局部表面的姿态归一化,使得到的特征描述子具有对旋转和平移的不变性。

(3) 对噪声稳健:由于在各个二维投影平面上均进行稀疏划分且只采用低阶矩而非高阶矩来生成特征描述子,因而 RoPS 对噪声非常稳健。

(4) 对分辨率变化稳健:RoPS 通过计算局部表面上所有点而非仅仅三角面片顶点的协方差矩阵得到局部参考坐标框架,因而对数据分辨率变化不敏感。

(5) 紧凑性:将三维点云投影到二维平面并在二维平面提取五维特征的过程极大地降低了数据量,使得 RoPS 特征描述子维度较低。

image

相关文章
|
19天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
213 55
|
29天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
155 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
2月前
|
机器学习/深度学习 人工智能 算法
探索人工智能中的强化学习:原理、算法与应用
探索人工智能中的强化学习:原理、算法与应用
|
2月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
94 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
2月前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
105 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
2月前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
103 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
2月前
|
机器学习/深度学习 人工智能 算法
探索人工智能中的强化学习:原理、算法及应用
探索人工智能中的强化学习:原理、算法及应用
|
2月前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
101 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-19
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-19
68 3
|
3月前
|
存储 人工智能 算法
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-18
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-18
53 0