《中国人工智能学会通讯》——7.18 篇章语义分析的应用

简介: 本节书摘来自CCAI《中国人工智能学会通讯》一书中的第7章,第7.18节, 更多章节内容可以访问云栖社区“CCAI”公众号查看。

7.18 篇章语义分析的应用

由于篇章语义分析以篇章结构和语义信息为分析目标,因此对机器翻译研究(MT,MachineTranslation)的促进作用最为直接。在已有的工作中,研究人员利用篇章语义分析技术从很多角度辅助机器翻译系统的性能提升。首先,篇章语义分析研究结果能够刻画 MT 系统的输入文本块之间的语义关系,这对 MT 系统更合理地组织翻译结果无疑是有益的[36] 。此外,篇章语义分析对关联词、文档结构都进行了比较深入的分析,这些信息有助于提升翻译文本的连贯性,生成可读性更好的翻译结果[37-38] 。

另外,篇章级别的机器翻译评价始终是一个难题,通过引入篇章语义分析研究结果,可以在篇章层面上利用核函数捕捉结构信息,有助于更好地进行翻译质量评估[39-40] 。

自动问答系统(QA,Question Answering)是另一个从篇章语义分析研究中受益的重量级应用。通常情况下问答系统包括问句理解和答案抽取两个模块。在问句理解部分,篇章语义分析有助于理解题干各部分之间的语义关系,从而加深对问题的理解[41] ;在答案抽取方面,篇章语义分析可以用来更精确地分析答案所在文本[42] ,进行候选答案的重排序,有助于更准确的回答问题[43] 。除了传统 QA 研究之外,近年来阅读理解研究也受到了越来越多的关注。阅读理解的任务是对于给定的一篇自然语言文章和给定与文章相关的问题,计算机根据词语特征等语义信息来自动选择与问句相关的候选答案句。在阅读理解任务中,文章主题的广泛性要求对语料库进行深度加工和处理,才能得到比较好的结果。阅读理解研究可以直接应用到许多的社会领域,它不但是自然语言处理的一个重要的研究方向,而且可以对自然语言处理技术的成熟有很大促进作用。事实上,组成篇章结构的语句、片段之间有着明显的语义关系,这些关系可以加深对问题的理解[41] 。在文献 [44-45] 中,已经证明了句法关系对阅读理解答案抽取有促进作用,但是其性能的提升并不明显。目前已有的基于概率和机器学习的答案抽取方法中,都是将篇章中的各个句子看作是相互没有语义关联的独立信息描述单位。但在实际上,篇章中的不同句子之间存在者紧密的逻辑语义关系,全部句子结合之后来才能完成对篇章主题的全面描述。因此,通过在篇章中逐一判别每个句子和用户问题之间逻辑匹配度的方法来选择答案句,就无法正确回答用户的所有问题。基于此,即有了结合篇章语义分析的阅读理解方法,与传统 QA 类似,该研究也得益于篇章语义分析[41,46-47]而获得了性能的显著提升[48] 。

相关文章
|
2月前
|
消息中间件 人工智能 安全
云原生进化论:加速构建 AI 应用
本文将和大家分享过去一年在支持企业构建 AI 应用过程的一些实践和思考。
637 43
|
3月前
|
人工智能 安全 中间件
阿里云 AI 中间件重磅发布,打通 AI 应用落地“最后一公里”
9 月 26 日,2025 云栖大会 AI 中间件:AI 时代的中间件技术演进与创新实践论坛上,阿里云智能集团资深技术专家林清山发表主题演讲《未来已来:下一代 AI 中间件重磅发布,解锁 AI 应用架构新范式》,重磅发布阿里云 AI 中间件,提供面向分布式多 Agent 架构的基座,包括:AgentScope-Java(兼容 Spring AI Alibaba 生态),AI MQ(基于Apache RocketMQ 的 AI 能力升级),AI 网关 Higress,AI 注册与配置中心 Nacos,以及覆盖模型与算力的 AI 可观测体系。
991 50
|
2月前
|
人工智能 运维 Kubernetes
Serverless 应用引擎 SAE:为传统应用托底,为 AI 创新加速
在容器技术持续演进与 AI 全面爆发的当下,企业既要稳健托管传统业务,又要高效落地 AI 创新,如何在复杂的基础设施与频繁的版本变化中保持敏捷、稳定与低成本,成了所有技术团队的共同挑战。阿里云 Serverless 应用引擎(SAE)正是为应对这一时代挑战而生的破局者,SAE 以“免运维、强稳定、极致降本”为核心,通过一站式的应用级托管能力,同时支撑传统应用与 AI 应用,让企业把更多精力投入到业务创新。
481 30
|
2月前
|
设计模式 人工智能 自然语言处理
3个月圈粉百万,这个AI应用在海外火了
不知道大家还记不记得,我之前推荐过一个叫 Agnes 的 AI 应用,也是当时在 WAIC 了解到的。
442 1
|
2月前
|
消息中间件 人工智能 安全
构建企业级 AI 应用:为什么我们需要 AI 中间件?
阿里云发布AI中间件,涵盖AgentScope-Java、AI MQ、Higress、Nacos及可观测体系,全面开源核心技术,助力企业构建分布式多Agent架构,推动AI原生应用规模化落地。
329 0
构建企业级 AI 应用:为什么我们需要 AI 中间件?
|
2月前
|
存储 人工智能 NoSQL
AI大模型应用实践 八:如何通过RAG数据库实现大模型的私有化定制与优化
RAG技术通过融合外部知识库与大模型,实现知识动态更新与私有化定制,解决大模型知识固化、幻觉及数据安全难题。本文详解RAG原理、数据库选型(向量库、图库、知识图谱、混合架构)及应用场景,助力企业高效构建安全、可解释的智能系统。
|
2月前
|
人工智能 算法 Java
Java与AI驱动区块链:构建智能合约与去中心化AI应用
区块链技术和人工智能的融合正在开创去中心化智能应用的新纪元。本文深入探讨如何使用Java构建AI驱动的区块链应用,涵盖智能合约开发、去中心化AI模型训练与推理、数据隐私保护以及通证经济激励等核心主题。我们将完整展示从区块链基础集成、智能合约编写、AI模型上链到去中心化应用(DApp)开发的全流程,为构建下一代可信、透明的智能去中心化系统提供完整技术方案。
302 3
|
3月前
|
存储 人工智能 Serverless
函数计算进化之路:AI 应用运行时的状态剖析
AI应用正从“请求-响应”迈向“对话式智能体”,推动Serverless架构向“会话原生”演进。阿里云函数计算引领云上 AI 应用 Serverless 运行时技术创新,实现性能、隔离与成本平衡,开启Serverless AI新范式。
511 12
|
2月前
|
人工智能 安全 Serverless
再看 AI 网关:助力 AI 应用创新的关键基础设施
AI 网关作为云产品推出已有半年的时间,这半年的时间里,AI 网关从内核到外在都进行了大量的进化,本文将从 AI 网关的诞生、AI 网关的产品能力、AI 网关的开放生态,以及新推出的 Serverless 版,对其进行一个全面的介绍,期望对正在进行 AI 应用落地的朋友,在 AI 基础设施选型方面提供一些参考。
682 61
|
2月前
|
人工智能 缓存 运维
【智造】AI应用实战:6个agent搞定复杂指令和工具膨胀
本文介绍联调造数场景下的AI应用演进:从单Agent模式到多Agent协同的架构升级。针对复杂指令执行不准、响应慢等问题,通过意图识别、工具引擎、推理执行等多Agent分工协作,结合工程化手段提升准确性与效率,并分享了关键设计思路与实践心得。
570 20
【智造】AI应用实战:6个agent搞定复杂指令和工具膨胀

热门文章

最新文章