中国人工智能学会通讯——深度学习与视觉计算 1.3 计算机视觉领域利用深度学习可能带来的未来研究方向

简介:

1.3 计算机视觉领域利用深度学习可能带来的未来研究方向

image

第一个,深度图像分析。目前基于深度 学习的图像算法在实验数据库上效果还是 不错的,但是远远不能够满足实际大规模 应用需求,需要进一步的提升算法性能从 而能够转化相应的实际应用。比如这个基 于图片的应用,可以估计性别和年龄,但 是其实经常会犯错,因此需要进一步提升 深度图像分析的性能。

image

第二个,深度视频分析。视频分析牵扯 到大量的数据和计算量,所以做起来更加 麻烦。当前深度视频分析还处于起步的阶 段,然而视频应用非常广泛,比如人机交互、 智能监控等,所以加强深度视频分析是个 重要的方向。

image

第三个,大规模深度学习。随着时间的 推移,数据量将呈指数级增长。为了处理 更大规模的数据,需要进行多 GPU 并行及 分布式计算。开发大规模深度学习算法是 相当必要的。

image

第四个,无监督(半监督)学习。这 个方向是很明显的,因为实际应用中监 督信息可能常常是缺失的,在大数据时 代背景下要想标注所有的数据代价也是 昂贵的。为了充分应用无标记的数据, 进行无监督(或半监督)学习是非常重 要的。近来的预测学习本质上与无监督 学习是对应的。

image

第五个,多模态学习。多模态数据无 处不在,尤其在互联网时代,网络上的图 像、文本、语音等同时存在。多模态数据 具有语义一致性、信息互补性的特点,互 补性可做多模态数据的融合,一致性可做 跨模态关联(如跨模态检索)。视觉信息 的有效理解离不开周边文本等其他模态数 据,因此多模态学习是非常有意义的研究 方向。

image

第六个,类脑智能研究。神经网络本 身是模拟大脑认知机理提出的网络结构。 当前部分生物机制已经被应用到深度学习 中,比如注意机制、神经元跨层连接机制等。 我们有幸申请到一个基金委重点项目,探 索深度认知神经网络模型与方法,就是希 望在神经网络模型上能够嵌入一些脑认知 功能,比如注意机制、记忆机制、反馈机制、 推理机制等,以期开发更 Powerful 的神经 网络新模型。在全球推动脑计划的大背景 下,研究类脑智能显得尤为迫切和必要。

(本文根据王亮研究员在中国人工智能学会首 期“人工智能前沿讲习班”的现场报告整理)

image

博士,研究员,博士生导师,IEEE 高级会员,国际模式识别协会会士(IAPR Fellow),模式识别国家重点 实验室副主任,计算机学会计算机视觉专委会秘书长,图像视频大数据产业技术创新战略联盟秘书长,电子 学会青年科学家俱乐部副主席,中国图象图形学学会视觉大数据专委主任,中国科学院脑科学与智能技术卓 越中心骨干。中科院百人计划入选者(终期优秀),国家杰出青年科学基金获得者,国家青年科技奖获得者。 2004 年获中科院自动化所工学博士学位。2004-2010 年分别在英国帝国理工学院、澳大利亚莫纳什大学、 墨尔本大学及英国巴斯大学工作。主要研究领域是模式识别、计算机视觉、大数据分析等。目前 Google Scholar 引用 9 200 余次,近 5 年 SCI 他引 1200 次。

目录
打赏
0
0
0
0
16486
分享
相关文章
增强深度学习模型的可解释性和泛化能力的方法研究
【8月更文第15天】在深度学习领域,模型的准确率和预测能力是衡量模型好坏的重要指标。然而,随着模型复杂度的增加,它们往往变得越来越难以理解,这限制了模型在某些关键领域的应用,例如医疗诊断、金融风险评估等。本文将探讨如何通过几种方法来增强深度学习模型的可解释性,同时保持或提高模型的泛化能力。
1035 2
探索未来技术:量子计算与人工智能的融合
随着科技的飞速发展,量子计算和人工智能已成为引领未来的两大关键技术。本文将深入探讨量子计算的原理及其对传统计算模式的挑战,以及人工智能如何借助量子计算实现质的飞跃。通过分析两者的融合点,我们将预见到一个全新的技术革命,它不仅会改变数据处理方法,还将在多个领域内引发创新浪潮。文章旨在为读者提供一个关于未来技术趋势的宏观视角,同时指出当前面临的挑战和潜在的解决方案。
基于深度学习的图像识别技术在自动驾驶中的应用研究####
本文旨在探讨深度学习技术,特别是卷积神经网络(CNN)在自动驾驶车辆图像识别领域的应用与进展。通过分析当前自动驾驶技术面临的挑战,详细介绍了深度学习模型如何提升环境感知能力,重点阐述了数据预处理、网络架构设计、训练策略及优化方法,并展望了未来发展趋势。 ####
245 6
基于深度学习的图像识别技术研究进展###
本文旨在探讨深度学习在图像识别领域的最新研究进展,重点分析卷积神经网络(CNN)的技术创新、优化策略及其在实际应用中的成效。通过综述当前主流算法结构、损失函数设计及数据集增强技巧,本文揭示了提升模型性能的关键因素,并展望了未来发展趋势。尽管未直接涉及传统摘要中的研究背景、方法、结果与结论等要素,但通过对关键技术点的深度剖析,为读者提供了对领域现状与前沿动态的全面理解。 ###
深度学习中的学习率调度:循环学习率、SGDR、1cycle 等方法介绍及实践策略研究
本文探讨了多种学习率调度策略在神经网络训练中的应用,强调了选择合适学习率的重要性。文章介绍了阶梯式衰减、余弦退火、循环学习率等策略,并分析了它们在不同实验设置下的表现。研究表明,循环学习率和SGDR等策略在提高模型性能和加快训练速度方面表现出色,而REX调度则在不同预算条件下表现稳定。这些策略为深度学习实践者提供了实用的指导。
248 2
深度学习中的学习率调度:循环学习率、SGDR、1cycle 等方法介绍及实践策略研究
PyTorch Lightning:简化深度学习研究与开发
【8月更文第27天】PyTorch Lightning 是一个用于简化 PyTorch 开发流程的轻量级封装库。它的目标是让研究人员和开发者能够更加专注于算法和模型的设计,而不是被训练循环和各种低级细节所困扰。通过使用 PyTorch Lightning,开发者可以更容易地进行实验、调试和复现结果,从而加速研究与开发的过程。
311 1

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等